Models of Computation

Ganesh Gopalakrishnan

Aug 23, 2011

Table of contents

General Announcements

More Python, and Functional Programming

LANGUAGES

Recap

General Motivations for studying Automata Theory
Characters and strings in Python; ord and chr

Lists and Sequences (or tuples): two similarities / differences?
Lists and Sets: two similarities / differences?

Sets and Sequences: two similarities / differences?

Definition using comprehensions (“set of all x such that,” etc.)

vV v vV V. VvV VY

Function range

Strings and Substrings

Let s="abcd". Then what do these denote

>

>

vV v v Y

s[0], s[1]

s[1:, s[1::, s[0:]

s[:]

s[::2], s[1::2], s[::1], s[::-1]

s+s[::2]
http://docs.python.org/release/2.5.2/1ib/

string-methods.html
http://docs.python.org/library/stdtypes.html

http://docs.python.org/release/2.5.2/lib/string-methods.html
http://docs.python.org/release/2.5.2/lib/string-methods.html
http://docs.python.org/library/stdtypes.html

Lists

Let L=[1,2,3,4]. Then what do these denote
» L[0]

L[0:3:2, L[1::2

L.reverse() does destructive reversal

L=[1,2,3,4,5]

Li1=L

L[::-1], then print L, L1

L.reverse(), then print L, L1

v

vV v v v Y

Lambdas

» Anonymous functions

vV v v v Y

Function Literals (like 1993 is a number)

In constructions such as def fred(x, y): .., fredis
redundant!

» What about if fred is recursive?
» Still redundant!

lambda x: x+1

lambda x, y: x+y

lambda x, y=4: x+y # Overloaded use, default y=4
f = lambda x: x+1

def something():.... return lambda x: x+1...

Map, Filter, Reduce

» Maps functions on lists, sets, etc.
» list(map(lambda x: =x+1, [1, 2, 3]))

» def £(O: ... then later list(map(£f, [1,2,3]1)) is OK
too
» filter(lambda x: x%2 == 1, [0,1,2,3,4,5])

vV v v v .Y

To use reduce, do from functools import *
Given an associative operator, does tree-reduction
reduce(lambda x, y: x+y, range(11))
reduce(lambda x, y: x*y, range(6))
reduce(lambda x, y: x*y, range(1,6))

Dicts

»D="a’: 1, ’b’: 2

» D.keys()

» D.values()

» D.items()

» set(D.items())

» D.update((’aa’: 11, ’bb’: 22))

Languages, and Operations

vV v V. VvV V. V. VvV VY

Sets of strings

Almost always (in this class): infinite sets

Always (in this class): infinite sets containing finite strings
Name one infinite set of strings

Name one infinite set of numbers

Name one infinite set of sets

Name one finite set of finite strings

Name one finite set of infinite strings

Name one infinite set of infinite strings

Language Operations

» Empty Language (or Zero Language):) or {} We call it the
“zero” language because it is like the 0-element for
concatenation.

» Unit Language: {¢} We call it the “unit” language because it
is like the unit element for concatenation.

Language Operations

» Concatenation: Lilo ={xy | x € Li ANy € Ly}
» Exponentiation: [° = {e}andL" = LL"~!

Language Operations

» Union: L1UL2:{X | XELl\/XELQ}
» Star: L* =19 U 1 U [?2 U...

Language Operations

> Reverse: rev(L) = {rev(s) | s € L}

» Complementation: Complementation of any set is with
respect to a “universe” (or universal set). For language
complementation, the universe is X*. Now define the
complementation of a language L with respect to that
universe:

L={x| xexT\L}

Again, language complements can be (and usually are)
infinitary. For “simulating it in Python,” we need to bound
complements:

Language Operations

» Homomorphism on a string: Given a string belonging to ¥* (a
“string over ¥*""), a function h from domain X* to range ['* is
called a homomorphism if it respects two conditions:

> h(e)=¢
> h(xy) = h(x)h(y)

» Homomorphism on a language: Given a homomorphism from
> * to range I'*, it can be applied to a language L C ¥* to
produce a language G C I'*, and is defined in the obvious
manner:

h(L) = {h(x) | x €L}

Language Operations

» Intersection: Ly NLy ={x | x€ L1 Ax € Ly}
» Language Subtraction: L1\ Lo ={x | x€ Li Ax ¢ Lo}
» Symmetric difference: (L1 \ Lz) U (L2 \ L1)

	General Announcements
	More Python, and Functional Programming
	LANGUAGES

