
Models of Computation

Ganesh Gopalakrishnan

Aug 23, 2011

Table of contents

General Announcements

More Python, and Functional Programming

LANGUAGES

Recap

I General Motivations for studying Automata Theory

I Characters and strings in Python; ord and chr

I Lists and Sequences (or tuples): two similarities / differences?

I Lists and Sets: two similarities / differences?

I Sets and Sequences: two similarities / differences?

I Definition using comprehensions (“set of all x such that,” etc.)

I Function range

Strings and Substrings

Let s="abcd". Then what do these denote

I s[0], s[1]

I s[1:, s[1::, s[0:]

I s[:]

I s[::2], s[1::2], s[::1], s[::-1]

I s+s[::2]

I http://docs.python.org/release/2.5.2/lib/
string-methods.html

I http://docs.python.org/library/stdtypes.html

http://docs.python.org/release/2.5.2/lib/string-methods.html
http://docs.python.org/release/2.5.2/lib/string-methods.html
http://docs.python.org/library/stdtypes.html

Lists

Let L=[1,2,3,4]. Then what do these denote

I L[0]

I L[0:3:2, L[1::2

I L.reverse() does destructive reversal

I L=[1,2,3,4,5]

I L1=L

I L[::-1], then print L, L1

I L.reverse(), then print L, L1

Lambdas

I Anonymous functions

I Function Literals (like 1993 is a number)
I In constructions such as def fred(x, y): .., fred is

redundant!
I What about if fred is recursive?
I Still redundant!

I lambda x: x+1

I lambda x, y: x+y

I lambda x, y=4: x+y # Overloaded use, default y=4

I f = lambda x: x+1

I def something():.... return lambda x: x+1...

Map, Filter, Reduce

I Maps functions on lists, sets, etc.

I list(map(lambda x: x+1, [1, 2, 3]))

I def f(): ... then later list(map(f, [1,2,3])) is OK
too

I filter(lambda x: x%2 == 1, [0,1,2,3,4,5])

I To use reduce, do from functools import *

I Given an associative operator, does tree-reduction

I reduce(lambda x, y: x+y, range(11))

I reduce(lambda x, y: x*y, range(6))

I reduce(lambda x, y: x*y, range(1,6))

Dicts

I D = ’a’: 1, ’b’: 2

I D.keys()

I D.values()

I D.items()

I set(D.items())

I D.update((’aa’: 11, ’bb’: 22))

Languages, and Operations

I Sets of strings

I Almost always (in this class): infinite sets

I Always (in this class): infinite sets containing finite strings

I Name one infinite set of strings

I Name one infinite set of numbers

I Name one infinite set of sets

I Name one finite set of finite strings

I Name one finite set of infinite strings

I Name one infinite set of infinite strings

Language Operations

I Empty Language (or Zero Language): ∅ or {} We call it the
“zero” language because it is like the 0-element for
concatenation.

I Unit Language: {ε} We call it the “unit” language because it
is like the unit element for concatenation.

Language Operations

I Concatenation: L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}
I Exponentiation: L0 = {ε}andLn = LLn−1

Language Operations

I Union: L1 ∪ L2 = {x | x ∈ L1 ∨ x ∈ L2}
I Star: L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Language Operations

I Reverse: rev(L) = {rev(s) | s ∈ L}
I Complementation: Complementation of any set is with

respect to a “universe” (or universal set). For language
complementation, the universe is Σ∗. Now define the
complementation of a language L with respect to that
universe:

L = {x | x ∈ Σ∗ \ L}.

Again, language complements can be (and usually are)
infinitary. For “simulating it in Python,” we need to bound
complements:

Language Operations

I Homomorphism on a string: Given a string belonging to Σ∗ (a
“string over Σ∗”), a function h from domain Σ∗ to range Γ∗ is
called a homomorphism if it respects two conditions:

I h(ε) = ε
I h(xy) = h(x)h(y)

I Homomorphism on a language: Given a homomorphism from
Σ∗ to range Γ∗, it can be applied to a language L ⊆ Σ∗ to
produce a language G ⊆ Γ∗, and is defined in the obvious
manner:
h(L) = {h(x) | x ∈ L}

Language Operations

I Intersection: L1 ∩ L2 = {x | x ∈ L1 ∧ x ∈ L2}
I Language Subtraction: L1 \ L2 = {x | x ∈ L1 ∧ x /∈ L2}
I Symmetric difference: (L1 \ L2) ∪ (L2 \ L1)

	General Announcements
	More Python, and Functional Programming
	LANGUAGES

