Models of Computation

Ganesh Gopalakrishnan

Aug 23, 2011

Table of contents

General Announcements

More Python, and Functional Programming

LANGUAGES

Recap

- General Motivations for studying Automata Theory
- Characters and strings in Python; ord and chr
- Lists and Sequences (or tuples): two similarities / differences?
- Lists and Sets: two similarities / differences?
- Sets and Sequences: two similarities / differences?
- Definition using comprehensions ("set of all \times such that," etc.)
- Function range

Strings and Substrings

Let $s=" a b c d "$. Then what do these denote
$-\mathrm{s}[0], \mathrm{s}[1]$

- $\mathrm{s}[1:, \mathrm{s}[1::, \mathrm{s}[0:]$
- $\mathrm{s}[$:]
- $s[:: 2], s[1:: 2], s[:: 1], s[::-1]$
- $\mathrm{s}+\mathrm{s}[:: 2]$
- http://docs.python.org/release/2.5.2/lib/ string-methods.html
- http://docs.python.org/library/stdtypes.html

Lists

Let $\mathrm{L}=[1,2,3,4]$. Then what do these denote

- L[0]
- L[0:3:2, L[1::2
- L.reverse() does destructive reversal
- $\mathrm{L}=[1,2,3,4,5]$
- L1=L
- L[::-1], then print L, L1
- L.reverse(), then print L, L1

Lambdas

- Anonymous functions
- Function Literals (like 1993 is a number)
- In constructions such as def fred(x, y): .., fred is redundant!
- What about if fred is recursive?
- Still redundant!
- lambda $x: ~ x+1$
- lambda $x, y: x+y$
- lambda $x, y=4: \quad x+y$ \# Overloaded use, default $y=4$
- $\mathrm{f}=$ lambda $\mathrm{x}: ~ \mathrm{x}+1$
- def something():.... return lambda $x: x+1 \ldots$

Map, Filter, Reduce

- Maps functions on lists, sets, etc.
- list(map(lambda x: x+1, [1, 2, 3]))
- def f()$: \ldots$ then later list $(\operatorname{map}(\mathrm{f},[1,2,3])$) is OK too
- filter(lambda $\mathrm{x}: ~ \mathrm{x} \% 2==1,[0,1,2,3,4,5])$
- To use reduce, do from functools import *
- Given an associative operator, does tree-reduction
- reduce(lambda $x, y: x+y$, range(11))
- reduce(lambda $x, y: x * y$, range(6))
- reduce(lambda $x, y: x * y$, range $(1,6)$)

Dicts

- $\mathrm{D}=$ 'a': $1,{ }^{\prime} \mathrm{b}^{\prime}: 2$
- D.keys ()
- D.values()
- D.items()
- set (D.items ())
- D.update(('aa': 11, 'bb': 22))

Languages, and Operations

- Sets of strings
- Almost always (in this class): infinite sets
- Always (in this class): infinite sets containing finite strings
- Name one infinite set of strings
- Name one infinite set of numbers
- Name one infinite set of sets
- Name one finite set of finite strings
- Name one finite set of infinite strings
- Name one infinite set of infinite strings

Language Operations

- Empty Language (or Zero Language): \emptyset or $\}$ We call it the "zero" language because it is like the 0-element for concatenation.
- Unit Language: $\{\varepsilon\}$ We call it the "unit" language because it is like the unit element for concatenation.

Language Operations

- Concatenation: $L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}$
- Exponentiation: $L^{0}=\{\varepsilon\}$ and $L^{n}=L L^{n-1}$

Language Operations

- Union: $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1} \vee x \in L_{2}\right\}$
- Star: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$

Language Operations

- Reverse: $\operatorname{rev}(L)=\{\operatorname{rev}(s) \mid s \in L\}$
- Complementation: Complementation of any set is with respect to a "universe" (or universal set). For language complementation, the universe is Σ^{*}. Now define the complementation of a language L with respect to that universe:

$$
\bar{L}=\left\{x \mid x \in \Sigma^{*} \backslash L\right\} .
$$

Again, language complements can be (and usually are) infinitary. For "simulating it in Python," we need to bound complements:

Language Operations

- Homomorphism on a string: Given a string belonging to Σ^{*} (a "string over Σ^{*}), a function h from domain Σ^{*} to range Γ^{*} is called a homomorphism if it respects two conditions:
- $h(\varepsilon)=\varepsilon$
- $h(x y)=h(x) h(y)$
- Homomorphism on a language: Given a homomorphism from Σ^{*} to range Γ^{*}, it can be applied to a language $L \subseteq \Sigma^{*}$ to produce a language $G \subseteq \Gamma^{*}$, and is defined in the obvious manner:

$$
h(L)=\{h(x) \mid x \in L\}
$$

Language Operations

- Intersection: $L_{1} \cap L_{2}=\left\{x \mid x \in L_{1} \wedge x \in L_{2}\right\}$
- Language Subtraction: $L_{1} \backslash L_{2}=\left\{x \mid x \in L_{1} \wedge x \notin L_{2}\right\}$
- Symmetric difference: $\left(L_{1} \backslash L_{2}\right) \cup\left(L_{2} \backslash L_{1}\right)$

