
CS 3100 – Models of Computation – Fall 2011 – Notes for L19

Design a CFG for L1 = {aibjck | i, j, k ≥ 0, if odd(i) then j = k}

• Do case analysis at the top level

Cases are: i is odd and i is even

• Write down productions for each case, naming parsing subgoals through non-terminals

S -> Odd Mbc | Even Nbc

Even -> epsilon | a a Even

Odd -> a Even

Mbc -> b Mbc c | epsilon

Nbc -> Bs Cs

Bs -> b Bs | epsilon

Cs -> c Cs | epsilon

Design a CFG for L2 = {aibjck | i, j, k ≥ 0, if (i = 1) then 0 ≤ j − k ≤ 1}

1

Design a PDA for L1

Design a PDA for L2

2

Direct conversion of CFG to PDA for L1

Direct conversion of CFG to PDA for L2

3

CFG for L3 = {w11w2 | | w1 |=| w2 |, w1, w2 ∈ {0, 1}∗}

CFG for Lwwc = Lww where Lww = {ww | | w ∈ {0, 1}∗}

Note that Lww is not context free! So CFLs are not closed under complementation. They are closed under
union. Thus, they can’t be closed under intersection.

4

Show that G1 below is consistent and complete with respect to language Leqab = {w | w ∈
{a, b}∗, and #a(w) = #b(w)}

G1: S -> a S b S | b S a S | epsilon

Guess the language G2 is generating and show it is consistent and complete

G2: S -> (W S | epsilon
W -> (W W |)

5

Simplify the grammar G3 below, stating the steps

G3:
S -> A B | D
A -> 0 A | 1 B | C
B -> 2 | 3 | A
D -> A C | B D
E -> 0

By bottom-up marking, locate all generating symbols. Eliminate those that are not. A generating non-terminal
is one which has at least one production where all the RHS non-terminals are generating. Then through
graph-search (BFS or DFS or others) from S, locate those that are generating and reachable. The rest can go.

Simplify the grammar G4 below, stating the steps

G4:
S -> A | B
A -> (W A | (X C
B -> (W B | (X D
W -> (W W | (X Y
X -> (W X | (X Z
W ->)
B -> epsilon

6

Purely left-linear, purely right-linear, NFAs: Convert G5 into an NFA

G5:
S -> 0 A | 1 B | epsilon
A -> 1 C | 0
B -> 0 C | 1
C -> 1 | 0 C

Present the NFA for “second from last is a 1” as a CFG

7

Mixed left and right linearity does not guarantee that things are regular

Example: This is context-free.
S -> 0 T | epsilon
T -> S 1

Reverse the CFG G4, presenting the result as a CFG

Note that this approach can be used to render a purely left-linear grammar as a purely right-linear one, and
then one can draw the NFA.

8

Present G6 as an equivalent regular expression

S -> T T
T -> U T | U
U -> 0 U | 1 U | epsilon

Can we simplify G7 as an equivalent regular expression?

S -> T T | U
T -> 0 T | T 0 | #
U -> 0 U 0 0 | #

Argue the cases underlying this example.

9

A Pumping Lemma for CFLs

For example, consider the CFG

S -> (S) | T | e

T -> [T] | T T | e.

Here is an example derivation:

S => (S) => ((T)) => (([T])) => (([]))

^ ^

Occurrence-1 Occurrence-2

Occurrence-1 involves Derivation-1: T => [T] => []

Occurrence-2 involves Derivation-2: T => e

Here, the second T arises because we took T and expanded it into
[T] and then to []. Now, the basic idea is that we can use Derivation-1 used in the first occurrence in place
of Derivation-2, to obtain a longer string:

S => (S) => ((T)) => (([T])) => (([[T]])) => (([[]]))

^ ^

Occurrence-1 Use Derivation-1 here

In the same fashion, we can use Derivation-2 in place of Derivation-1 to obtain a shorter string, as well:

S => (S) => ((T)) => (())

^

Use Derivation-2 here

When all this happens, we can find a repeating non-terminal that can be pumped up or down. In our present
example, it is clear that we can manifest (([i]i)) for i ≥ 0 by either applying Derivation-2 directly, or by
applying some number of Derivation-1s followed by Derivation-2. In order to conveniently capture the
conditions mentioned so far, it is good to resort to parse trees. Consider a CFG with |V | non-terminals, and
with the right-hand side of each rule containing at most b syntactic elements (terminals or non-terminals).
Consider a b-ary tree built up to height |V | + 1, as shown in Figure 1. The string yielded on the frontier of
the tree w = uvxyz. If there are two such parse trees for w, pick the one that has the fewest number of nodes.
Now, if we avoid having the same non-terminal used in any path from the root to a leaf, basically each path will
“enjoy” a growth up to height at most |V | (recall that the leaves are terminals). The string w = uvxyz is, in this
case, of length at most b|V |. This implies that if we force the string to be of length b|V |+1 (called p hereafter),
a parse tree for this string will have some path that repeats a non-terminal. Call the higher occurrence V1 and
the lower occurrence (contained within V1) V2. Pick the lowest two such repeating pair of non-terminals. Now,
we have these facts:

• |vxy| ≤ p; if not, we would find two other non-terminals that exist lower in the parse tree than V1 and V2,
thus violating the fact that V1 and V2 are the lowest two such.

• |vx| ≥ 1; if not, we will in fact have w = uxz, for which a shorter parse tree exists (namely, the one where
we directly employ V2).

• Now, by pumping, we can obtain the desired repetitions of v and y, as described in Theorem 0.1.

Theorem 0.1 Given any CFG G = (N, Σ, P, S), there exists a number p such that given a string w in L(G)
such that |w| ≥ p, we can split w into w = uvxyz such that |vy| > 0, |vxy| ≤ p, and for every i ≥ 0,
uvixyiz ∈ L(G).

10

We can apply this Pumping Lemma for CFGs in the same manner as we did for regular sets. For example,
let us sketch that Lww of page ?? is not context-free.

Illustration 0.1 Suppose Lww were a CFL. Then the CFL Pumping Lemma would apply. Let p be the
pumping length associated with a CFG of this language. Consider the string 0p1p0p1p which is in Lww. The
segments v and y of the Pumping Lemma are contained within the first 0p1p block, in the middle 1p0p block
or in the last 0p1p block, and in each of these cases, it could also have fallen entirely within a 0p block or a 1p

block. By pumping up or down, we will then obtain a string that is not within Lww.

11

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

V_1

V_2

Height |V| + 1
max. branching factor = b

V_2

u v x y z

S

u z

x

y zx

S

V_1

V_1

V_2
u v

v x y

Figure 1: Depiction of a parse tree for the CFL Pumping Lemma. The upper drawing shows a very long path
that repeats a non-terminal, with the lowest two repetitions occurring at V 2 and V 1 (similar to Occurrence-1
and Occurrence-2 as in the text). With respect to this drawing: (i) the middle drawing indicates what happens
if the derivation for V 2 is applied in lieu of that of V 1, and (ii) the bottom drawing depicts what happens if
the derivation for V 2 is replaced by that for V 1, which, in turn, contains a derivation for V 2

12

If-then-else Ambiguity

An important practical example of ambiguity arises in the context of grammars pertaining to if statements, as
illustrated below:

STMT -> if EXPR then STMT

| if EXPR then STMT else STMT

| OTHER

OTHER -> p

EXPR -> q

The reason for ambiguity is that the else clause can match either of the then clauses. Compiler writers avoid
the above if-then-else ambiguity by modifying the above grammar in such a way that the else matches with
the closest unmatched then. One example of such a rewritten grammar is the following:

STMT -> MATCHED | UNMATCHED

MATCHED -> if EXPR then MATCHED else MATCHED | OTHER

UNMATCHED -> if EXPR then STMT

| if EXPR then MATCHED else UNMATCHED

OTHER -> p

EXPR -> q

This forces the else to go with the closest previous unmatched then.
An example of an inherently ambiguous language is

{0i1j2k | i, j, k ≥ 0 ∧ i = j ∨ j = k}.

13

Machines Languages Nature of grammar

DFA/NFA Regular
Left-linear or Right-linear
productions

DPDA
Deterministic
CFL

Each LHS has one non-terminal
The productions are deterministic

NPDA
(or “PDA”) CFL

Each LHS has only
one non-terminal

LBA
Context Sensitive
Languages

LHS may have length > 1, but
| LHS| ≤ |RHS|, ignoring ε productions

DTM/NDTM
Recursively
Enumerable

General grammars
(|LHS| ≥ |RHS| allowed)

Figure 2: The Chomsky hierarchy and allied notions

14

