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Push-down Automata and Context-free
Grammars

This chapter details the design of push-down automata (PDA) for vari-
ous languages, the conversion of CFGs to PDAs, and vice versa. In par-
ticular, after formally introducing push-down automata in Section 14.1,
we introduce two notions of acceptance - by final state and by empty
stack - in Sections 14.1.2 and 14.1.3, respectively. In Section 14.2, we
show how to prove PDAs correct using the Inductive Assertions method
of Floyd. We then present an algorithm to convert a CFG to a language-
equivalent PDA in Section 14.3, and an algorithm to convert a PDA
to a language-equivalent CFG in Section 14.4. This latter algorithm
is non-trivial - and so we work out an example entirely, and also show
how to simplify the resulting CFG and prove it correct. In Section 14.5,
we briefly discuss a normal form for context-free grammars called the
Chomsky normal form. We do not discuss other normal forms such as
the Greibach normal form, which may be found in most other text-
books. We then describe the Cocke-Kasami-Younger (CKY) parsing
algorithm for a grammar in the Chomsky normal form. Finally, we
briefly discuss closure and decidability properties in Section 14.6.

14.1 Push-down Automata

A push-down automaton (PDA) is a structure (Q,Σ,Γ, δ, q0, z0, F )
where Γ is the stack alphabet (that usually includes the input alphabet
Σ), z0 is the initial stack symbol, and δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ ∗

is the transition function that takes a state, an input symbol (or ε),
and a stack symbol (or ε) to a set of states and stack contents. In
particular, the 2Q×Γ ∗

in the range of the signature indicates that the
PDA can nondeterministically assume one of many states and stack
contents. Also, as the signature of the δ function points out, in each
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move, a PDA may or may not read an input symbol (note the ε in the
signature), but must read the top of the stack in every move (note the
absence of a ε associated with Γ ).

We must point out that many variations on the above signature
are possible. In [111] and in the JFLAP tool [66], for instance, PDAs
may also optionally read the top of the stack (in effect, they employ
the signature δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → 2Q×Γ ∗

). Such varia-
tions do not fundamentally change the “power” of PDAs. We adopted
our convention—of always reading and popping the stack during every
move—because it yields an intuitively clearer algorithm for converting
PDAs to CFGs1 (following [60]).

Notions of Acceptance:

There are two different notions of acceptance of a string by a PDA.
According to the first, a PDA accepts a string when, after reading the
entire string, the PDA is in a final state. According to the second, a
PDA accepts a string when, after reading the entire string, the PDA
has emptied its stack. We define these notions in Sections 14.1.2 and
14.1.3. In both these definitions, we employ the notions of instanta-
neous descriptions (ID), and step relations $, as well as its reflexive
and transitive closure, $∗.

Instantaneous Description:

An instantaneous description (ID) for a PDA is a triple of the form

(state, unconsumed input, stack contents)

Formally, the type of the instantaneous description of a PDA is TID =
Q × Σ∗ × Γ ∗. The type of $ is $ ⊆ TID × TID. The $ relation is as
follows:

(q, aσ, bγ) $ (p,σ, gγ)〉 iff
a ∈ Σε ∧ b ∈ Γ ∧ g ∈ Γ ∗ ∧ ∃(p, g) ∈ δ(q, a, b).

In other words, if δ allows a move from state q and stack top b to state p
via input a ∈ Σ∪{ε}, then $ does allow that. In this process, the stack
top b is popped, and the new stack contents described by g is pushed
on. The first symbol of g ends up at the top of the stack. Sometimes,
the last symbol of g is set to b, thus helping restore b (that was popped).
In some cases, g is actually made equal to b, thus modeling the fact
that the stack did not suffer any changes.
1 In fact, a PDA move that optionally reads the top of the stack may be represented

by a PDA move that reads whatever is on top of the stack, but pushes that symbol
back.
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14.1.1 Conventions for describing PDAs

We prefer to draw tables of PDA moves. Please make the tables de-
tailed. Do write comments - after all, you are coding in a pretty low-level
language that is highly error-prone; therefore, the more details you pro-
vide, the better it is for readers to follow your work. A diagram will
also be highly desirable, as is included in Figure 14.1.

In Section 14.2, we present a method to formally prove the correct-
ness of PDAs using the inductive assertions method of Floyd [40]. This
technique should convince the reader that arguing the correctness of
a PDA is akin to verifying a program; both are activities that can be
rendered difficult if comments and clear intuitive explanations are not
provided.

The diagramming style we employ for PDAs resembles state dia-
grams used for NFAs and DFAs, the only difference being that we now
annotate moves by insymb, ssymb → sstr where

insymb is an input symbol or ε,
ssymb is a stack symbol, and
sstr is a string of stack symbols that is pushed onto the stack when
the move is executed.

Also, recall that PDAs don’t need to specify a behavior for every possi-
ble insymb/ssymb combination at every state. If an unspecified combi-
nation occurs, the next state of the PDA is undefined. In effect, PDAs
are partial functions from inputs and stack contents to new stack con-
tents and new states.
As said earlier, a PDA accepts an input if the input leads it to one of
the final states. There is one important difference between DFAs and
DPDAs: the latter may have undefined input/stack combinations. In
other words, one does not have to fully decode inputs and transition
to “black hole” states upon arrival of illegal inputs, as with a DFA.
Finally, recall the difference between NPDAs and DPDAs pointed out
in Section 13.5.1. Now we define the different notions of acceptance of
PDAs in more detail.

14.1.2 Acceptance by final state

A PDA accepts a string w by final state if and only if, for some
qf ∈ F , the final set of states of the PDA, (q0, w, z0) $∗ (qf , ε, g). For
any given PDA, our default assumption will be that of acceptance by
final state. The language of the PDA will be defined as follows:

{w | ∃g . (q0, w, z0) $∗ (qf , ε, g) for qf ∈ F}.
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Current
State Input Stack

top
String
pushed

New
State Comments

q0 0 z0 0 z0 q1 0. Have to push on this one
q0 1 z0 1 z0 q1 ...or this one
q1 0 0 0 0 q1 1a.Assume not at midpoint
q1 0 1 0 1 q1 Have to push on this one
q1 0 0 ε q1 1b. Assume at midpoint
q1 1 1 1 1 q1 2a. Assume not at midpoint
q1 1 0 1 0 q1 Have to push on this one
q1 1 1 ε q1 2b. Assume at midpoint
q1 ε z0 z0 q2 3. Matched around midpoint

q2q0 q1

0,z0 -> 0 z0
1,z0 -> 1 z0 E,z0 -> z0

0,0 -> 00
1, 1 -> 11
0,1 -> 01
1,0 -> 10
0,0 -> E
1,1 -> E

WINNER TOKEN LOSER TOKEN

(q0,001100, z0) (q0,001100, z0)
push |- (q1, 01100, 0z0) push |- (q1, 01100, 0z0)
push |- (q1, 1100, 00z0) pop |- (q1, 1100, z0)
push |- (q1, 100, 100z0) stuck! |- can’t accept
pop |- (q1, 00, 00z0)
pop |- (q1, 0, 0z0)
pop |- (q1, , z0)
accept |- (q2, , z0)

ACCEPT! REJECT!

Fig. 14.1. Transition table and transition graph of a PDA for the language
L0 = {wwR | w ∈ {0, 1}∗}, and an illustration of the " relation on input
001100
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For a PDA P whose acceptance is defined by final states, we employ the
notation “L(P )” to denote its language. In contrast, for a PDA P whose
acceptance is defined by empty stack, discussed next in Section 14.1.3,
we employ the notation “N(P )” to denote its language. These are,
respectively, subsets of Σ∗ that lead the PDA into a final state or
cause its stack to be emptied.

14.1.3 Acceptance by empty stack

To further highlight PDAs that accept by empty stack, we leave out
the F component from their seven-tuple presentation, thus obtaining
the six-tuple P2 = (Q,Σ,Γ, δ, q0, z0). For such PDAs, a string w is in
its language exactly when the following is true:

(q0, w, z0) $∗ (q, ε, ε).

Here, q ∈ Q, i.e., q is any state. All that matters is that the input is
entirely consumed and an empty stack results in doing so.

Consider the PDA for language L0 defined in Figure 13.6, repro-
duced in Figure 14.1 for convenience. This figure also shows how IDs
evolve. In particular, nondeterminism is clearly shown by the fact that
for the same input string, namely 001100, one token (called the “win-
ner”) can progress towards acceptance, while another token (called
“loser”) progresses towards demise. Each token also carries with it the
PDA stack. As long as one course of forward progress through $ exists,
and leads to a final state (q2, in our present example), the given string
is accepted. The other tokens “die out.2” Such animations are best ob-
served using tools such as JFLAP [66]. In fact, JFLAP allows users to
choose the acceptance criterion—through final states, through empty
stack, or both (when a final state is reached on an empty stack3). JFLAP
maintains a view of each token as it journeys through the labyrinth of
a PDA transition diagram, therefore watching JFLAP animations is a
good way to build intuitions about PDAs.

An arbitrarily given PDA may reach a final state without having
emptied its stack. A given PDA may also have an empty stack in a state
other than its final state. It is, however, possible to modify a given PDA
so that it enters a final state or empties its stack only in a controlled

2 Nondeterminism in PDAs is akin to the “fork” operation in operating systems
such as Unix: an entire clone of the PDA, including its stack, are created at
every nondeterministic choice point, and these clones—or tokens as we have been
referring to them—either “win” or “lose.”

3 “...on an empty stomach?!”
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manner. Specifically, Section 14.1.4 describes how to convert a PDA
that accepts by final state into one that empties its stack exactly when
in a final state, and Section 14.1.4 describes how to convert a PDA that
accepts by empty stack into one that goes into a final state exactly when
its stack is empty.

Start state = q00

Current
State Input Stack

top
String
pushed

New
State Comments

q00 ε z00 z0 z00 q0 Start stack with z00; add z0 here.
q0 ε z0 z0 qS q0 is a final state; so jump to qS

qS ε any ε qS
qS drains the stack regardless of
what’s on top of the stack.

q0 0 z0 0 z0 q1 1a. Decide to stack a 0
q0 1 z0 1 z0 q1 2a. Decide to stack a 0
q1 0 0 0 0 q1 1a’. Decide to stack a 0
q1 0 1 0 1 q1 Forced to stack
q1 0 0 ε q1 1b. Decide to match
q1 1 1 1 1 q1 2a’. Decide to stack a 1
q1 1 0 1 0 q1 Forced to stack
q1 1 1 ε q1 2b. Decide to match
q1 ε z0 z0 q2 Prepare to drain the stack

q2 ε z0 z0 qS
Jump to
stack-draining state qS

q00 q0e,z00 -> z0 z00

q1
0,z0 -> 0 z0
1,z0 -> 1 z0

qSe,z0  -> z0

0,0 -> 00  1, 1 -> 11  0,1 -> 01
1,0 -> 10  0,0 -> e  1,1 -> e

q2e,z0  -> z0
e,z0  -> z0

e,any
 -> e

Fig. 14.2. The PDA of Figure 13.6 converted to one that accepts by empty
stack. There are some redundancies in this PDA owing to our following a
standard construction procedure.
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14.1.4 Conversion of P1 to P2 ensuring L(P1) = N(P2)

Given a PDA P1 that accepts by final state, we can obtain a PDA
P2 that accepts by empty stack such that N(P2) = L(P1), simply by
ensuring that P2 has an empty stack exactly when P1 reaches a final
state (for the same input w seen by both these PDAs). The following
construction achieves the above condition:

• To avoid the stack of P2 becoming empty “in between,” introduce
an extra symbol in P2’s stack alphabet, say z00.

• Start P2 with its stack containing z00, and then z0 riding above it.
• The remaining moves of P2 are similar to that of P1. However, “fi-

nal” states are insignificant for P2. Therefore, whenever P1 reaches
a final state, we introduce in P2, a move from it to a new stack-
draining state qS. While in qS, P2 empties its stack completely.

• No state other than qS tests for the stack-top being z00. Hence, the
stack is totally emptied, including z00, only in state qS.

Figure 14.2 illustrates this construction.

14.1.5 Conversion of P1 to P2 ensuring N(P1) = L(P2)

Given a PDA that is defined according to the “accept by empty stack”
criterion, how do we convert it to a PDA that accepts by final state?
A simple observation tells us that the stack can become empty at any
control state. Therefore, the trick is to start the PDA with a new bot-
tom of stack symbol z00. Under normal operation of the PDA, we do
not see z00 on top of the stack, as it will be occluded by the “real” top
of stack z0. However, in any state, if z00 shows up on top of the stack,
we add a transition to a newly introduced final state qF . qF is the only
final state in the new PDA. Hence, whenever the former PDA drains
its stack, the new PDA ends up in state qF .

Illustration 14.1.1 Develop a push-down automaton for Lambnck of
Illustration 13.2.1.

The PDA is shown in Figure 14.3. The PDA will first exercise a
nondeterministic option: either I shall decide to match a’s and b’s, or
do b’s against c’s. Recall that PDAs begin with z0 in the stack, and
further we must pop one symbol from the stack in each step. Also, in
each move, we can push zero, one, or more (a finite number) symbols
back onto the stack.

Here are some facts about this PDA (based on intuitions - no
proofs):
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Initial state = Q0 Final states = Q0,Qc,Qd

Current
State Input Stack

top
String
pushed

New
State Comments

Q0 ε z0 z0 Qab
Nondeterministically proceed to match
a’s against b’s

Q0 ε z0 z0 Qbc ..or proceed to match b’s against c’s

Qab a z0 a z0 Qab Stack the first ‘a’

Qab a a a a Qab Continue stacking a’s

Qab b a ε Qb
The first b to come;
match against an ‘a’

Qb b a ε Qb
One more b came; perhaps more
to come; so stay in Qb

Qb ε z0 z0 Qc
Go to Qc (“eat c” state), an
accept state

Qc c z0 z0 Qc Any number of c’s are OK in Qc

Qab ε z0 z0 Qc Enter the “eat c” accept state

Qbc a z0 z0 Qbc
Any number of a’s can come. Qbc
ignores them; it will match b’s and c’s

Qbc b z0 b z0 Qbc1 First b to come; no more a’s allowed

Qbc b b b b Qbc1 Continue stacking b’s; no no more a’s

Qbc1 c b ε Qm
Continue matching c’s; no
more b’s allowed

Qm c b ε Qm
Continue matching c’s; no
more a’s or b’s

Qm ε z0 z0 Qd
A token goes to Qd whenever
z0 is on top of the stack

Q0

Qabe,z0 -> z0

Qbc

e,z0 -> z0

Qc

c,z0 -> z0

Qd

e,z0 -> z0
a,z0 -> a z0
a,a -> a a

Qb

b,a  -> e
e,z0 -> z0b,a  -> e

a,z0 -> z0

Qbc1

b,z0 -> b z0
b,b -> b b Qmc,b -> e e,z0 -> z0

c,b -> e

Fig. 14.3. A PDA for Lambnck of Illustration 13.2.1
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• Nondeterminism is essential. We do not know whether we are going
to match a’s and b’s or b’s and c’s. In fact, for a string “abc,” there
must be two different paths that lead to some final state - hence,
nondeterminism exists.
• This language is inherently ambiguous. For string “abc” it must be
possible to build two distinct parse trees no matter which grammar
is used to parse it.

14.2 Proving PDAs Correct Using Floyd’s Inductive
Assertions

q0 q1a,Z -> aZ

a,e -> a

q2e,e -> e

b,a -> e q3
b,a -> e

q5
e,Z -> Z

e,a -> e

q4

e,a -> e

e,a -> e

Fig. 14.4. A PDA whose language is being proved correct using Floyd’s
method

Consider the PDA in Figure 14.4. What is its language? Think hard
before you proceed reading! !

Guessing the language and proving its correctness

We guess the language of this PDA to be

{aiabib | ib ≤ ia ≤ 3.ib}.

How do we prove this claim? We will use Floyd’s method which rests
on finding loop invariants. To simplify the discussion of the method a
bit, we assume that the PDA has arrived into state q2, having stacked
all the a’s (this being the only way this PDA can proceed to accept
anything). We seek a loop invariant (explained below) for the loop at
state q2.

Let ia be the number of a’s initially in the input; likewise for ib. Let
sa be the number of a’s on the stack (note that b’s don’t get into the
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stack, ever). Let nb be the number of b’s yet to be read. Let pa be the
number of a’s popped so far.

We explain Floyd’s method with respect to a single loop (for more
details, see [78]). With this assumption,

Floyd’s method works by pretending that we have arrested the pro-
gram (PDA in this case) suddenly within its loop, at an arbitrary
point during its execution.
We are then asked to find an accurate description relating all “im-
portant” variables used in the loop. This is known as the loop in-
variant.
The assertion and the variables participating in it must be suffi-
ciently comprehensive so that when we bring the loop to its exit
point, the final answer falls out as a special case of the loop invari-
ant.

Considering all this, we come up with these equations:

1. ia = sa + pa. This is because all the a’s are stacked, and then some
are popped, with the rest remaining in the stack.

2. (ib − nb) ≤ pa ≤ 3.(ib − nb). This is because for each ‘a’ that
is popped, we match it against one to three b’s. Therefore, the b’s
read thus far, namely (ib − nb), are as per this equation.

Now, these must be inductive assertions as far as any q2 to q2 path is
concerned. Let us check this:

In any q2 to q2 traversal, the a’s that are popped are the ones that
are removed from the stack; hence, the first assertion is inductive.
Consider the q2 to q3 to q2 traversal (the rest can be similarly
argued - see Exercise 14.3). We have nb going down by 1 while pa

goes up by 2. Thus we have to prove

(ib−nb) ≤ pa ≤ 3.(ib−nb) ⇒ (ib−nb+1) ≤ pa+2 ≤ 3.(ib−nb+1),

which follows from simple arithmetic.

Now, specializing the invariant to the exit point, we observe that exiting
occurs when pa = ia and nb = 0. This immediately gives us ib ≤ ia ≤
3.ib. !

14.3 Direct Conversion of CFGs to PDAs

When given the option of capturing a context-free language using a
PDA or a CFG, what would one choose? In many cases, a CFG would
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be easier to first obtain; in that case, there exists a rather elegant direct
conversion algorithm to convert that CFG into a PDA. This algorithm,
in effect, is a nondeterministic parsing algorithm. The opposite conver-
sion - a PDA to a CFG - is much more involved and is discussed in
Section 14.4.

By determinizing the CFG to PDA conversion algorithm, we can ob-
tain an exponential-time parsing algorithm for any CFG. Determiniza-
tion can be achieved by arranging a backtracking search; whenever the
NPDA is faced with a nondeterministic choice, we arrange a piece of
code that recursively searches for one of the paths to accept.4 In Sec-
tion 14.5, we discuss the Chomsky Normal Form for a CFG, and in
its context, discuss an O(N 3) parsing algorithm attributed to Cocke,
Kasami, and Younger (Section 14.5.1).

In the CFG to PDA conversion algorithm, the non-terminals and
terminals of the given grammar constitute the stack alphabet of the
PDA generated. In addition, the stack alphabet contains z0. The con-
version proceeds as follows:

• Start from state q0 with z0 on top of the stack.
• From q0, jump to state qM (for “main state”) with S, the start sym-

bol of the grammar, on top of the stack, and z0 below it (restored
in the jump).

• In state qM ,
− If the top of the stack is z0, jump to state qF , the only accepting

state.
− If the top of the stack is the terminal x, jump back to state qM

upon input x, without restoring x on top of the stack. Essen-
tially, the parsing goal of x has been fulfilled.

− If the top of the stack is the non-terminal X, and there is a rule
X → R, where R is a string of terminals and non-terminals,
jump to state qM by popping X and pushing R. Essentially, the
parsing goal of X is turned into zero or more parsing subgoals.

Illustration 14.3.1 Let us convert the CFG in Illustration 13.2.1 into
a PDA. The resulting PDA is given in Figure 14.5. First set up S to be
the parsing goal. The PDA can then take a nondeterministic jump to
two different states. One state sets up the parsing goals M and C, with
M on top of the stack. The other path sets up A and N.

Suppose parsing goal M is on top of the stack. We can then set up
the parsing goal a M b, with a on top of the stack. Discharging the
4 In a technical sense, your computer program would then serve as a deterministic

Turing machine that simulates your NPDA.
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Initial state = Q0 Final states = QF

Current
State Input Stack

top
String
pushed

New
State Comments

Q0 ε z0 S z0 Qmain Qmain is the main state of this PDA

Qmain ε S M C Qmain Create subgoals, ignoring actual input

Qmain ε S A N Qmain Create subgoals, ignoring actual input

Qmain ε M a M b Qmain Create subgoals, ignoring actual input

Qmain ε M ε Qmain Epsilon production for M

Qmain ε N b N c Qmain Create subgoals, ignoring actual input

Qmain ε N ε Qmain Epsilon production for N

Qmain ε C c C Qmain Create subgoals, ignoring actual input

Qmain ε C ε Qmain Epsilon production for C

Qmain ε A a A Qmain Create subgoals, ignoring actual input

Qmain ε A ε Qmain Epsilon production for A

Qmain a a ε Qmain Eat ‘a’ from input - a parsing goal

Qmain b b ε Qmain Eat ‘b’ from input - a parsing goal

Qmain c c ε Qmain Eat ‘c’ from input - a parsing goal

Qmain ε z0 z0 QF
Accept when z0 surfaces
(parsing goals met)

Fig. 14.5. CFG to PDA conversion for the CFG of Illustration 13.2.1
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parsing goal a is easy: just match a with the input. On the other hand,
with parsing goal M on top of the stack, we could also have set up the
parsing goal “ε” which means – we could be done! Hence, another move
can simply empty M from the stack. Then, finally, when z0 shows up
on top of stack, we accept, as there are no parsing goals left.

14.4 Direct Conversion of PDAs to CFGs

We first illustrate the PDA to CFG conversion algorithm with an ex-
ample. As soon as we present an example, we write the corresponding
general rule in slant fonts. Further details, should you need them, may
be found in the textbook of Hopcroft, Motwani, and Ullman [60] whose
algorithm we adopt. A slightly different algorithm appears in Sipser’s
book [111].

delta contains Productions
---------------------- -------------------------------

S -> [p,Z0,x] for x in {p,q}

<p,(,Z0> <p,(Z0> [p,Z0,r_2] -> ( [p,(,r_1] [r_1,Z0,r_2]

for r_i in {p,q}

<p,(,(> <p,((> [p,(,r_2] -> ( [p,(,r_1] [r_1,(,r_2]

for r_i in {p,q}

<p,),(> <p,e> [p,(,p] -> )

<p,e,Z0> <q,e> [p,Z0,q] -> e

Fig. 14.6. PDA to CFG conversion. Note that e means the same as ε.

Consider the PDA that accepts by empty stack,

({p, q}, {(, )}, {(, ), Z0}, δ, p, Z0)

with δ given in Figure 14.6. Recall that since this is a PDA that ac-
cepts by empty stack, we do not specify the F component in the PDA
structure. The above six-tuple corresponds to (Q,Σ,Γ, δ, q0, z0). This
figure also shows the CFG productions generated following the PDA
moves. The method used to generate each production is the following.
Each step is explained with a suitable section heading.
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14.4.1 Name non-terminals to match stack-emptying
possibilities

Notice that the non-terminals of this grammar have names of the form
[a,b,c]. Essentially, such a name carries the following significance:

It represents the language that can be generated by starting in state
a of the PDA with b on top of the stack, and being able to go to
state c of the PDA with the same stack contents as was present
while in state a.

This is top-down recursive programming at its best: we set up top-level
goals, represented by non-terminals such as [a,b,c], without imme-
diately worrying about how to achieve such complicated goals. As it
turns out, these non-terminals achieve what they seek through subse-
quent recursive invocations to other non-terminals - letting the magic
of recursion make things work out!

General rule: For all states q1, q2 ∈ Q and all stack symbols
g ∈ Γ , introduce a non-terminal [q1, g, q2] (most of these non-
terminals will prove to be useless later).

14.4.2 Let start symbol S set up all stack-draining options

All the CFG productions are obtained systematically from the PDA
transitions. The only exception is the first production, which, for our
PDA, is as follows:

S -> [p,Z0,x] for x in {p,q}.

In other words, two productions are introduced, they being:

S -> [p,Z0,p]
S -> [p,Z0,q].

Here is how to understand these productions. S, the start symbol of
the CFG, generates a certain language. This is the entire language of
our PDA. The entire language of our PDA is nothing but the set of all
those strings that take the PDA from its start state p to some state,
having gotten rid of everything in the stack. In our PDA, since it starts
with Z0 on top of stack, that’s the only thing to be emptied from the
stack. Since the PDA could be either in p or q after emptying the stack
(and since we don’t care where it ends up), we introduce both these
possibilities in the productions for S.

General rule: For all states q ∈ Q, introduce one production
S → [q0, z0, q].
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14.4.3 Capture how each PDA transition helps drain the
stack

A PDA transition may either get rid of the top symbol on the stack
or may end up adding several new symbols onto the stack. Therefore,
many PDA transitions do not help achieve the goal of draining the
stack. However, we can set up recursive invocations to clear the extra
symbols placed on top of the stack, thus still achieving the overall goals.

To see all this clearly, consider the fact that δ contains a move, as
shown below:

delta contains
----------------------
<p,(,Z0> <p,(Z0>

In this PDA, when in state p, upon seeing ( in the input and Z0 on top
of the stack, the PDA will jump to state p, having momentarily gotten
rid of Z0, but promptly restoring ( as well as Z0. Then the PDA has to
“further struggle” and get rid of ( as well as Z0, reaching some states
after these acts. It is only then that the PDA has successfully drained
the Z0 from its stack. Said differently, to drain Z0 on the stack while in
state p, read (, invite more symbols onto the stack, and then recursively
get rid of them as well. All this is fine, except we don’t know rightaway
where the PDA will be after getting rid of (, and subsequently getting
rid of Z0. However, this is no problem, as we can enumerate all possible
states, thus obtaining as many “catch all” rules as possible. This is
precisely what the set of context-free grammar rules generated for this
grammar says:

[p,Z0,r_2] -> ( [p,(,r_1] [r_1,Z0,r_2] for r_i in {p,q}

The rule says: “if you start from state p with a view to completely drain
Z0 from the stack, you will end up in some state r_2. That, in turn, is
a three step process:

• Read ( and, for sure, we will be in state p.
• From state p, get rid of ( recursively, ending up in some state r_1.
• From state r_1, get rid of Z0, thus ending up in the very same state
r_2!

Fortunately, this is precisely what the above production rule says, ac-
cording to the significance we assigned to all the non-terminals. We
will have sixteen possible rules even for this single PDA rule!! Many of
these rules will prove to be useless.

General rule: If δ(p, a, g) contains 〈q, g1, . . . , gn, introduce one
generic rule

[p, g, q0] → a [q, a, q1][q1, g1, q2] . . . [qn, gn, q0]
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and create one instance of the rule for each qi ∈ Q chosen in all
possible ways.

14.4.4 Final result from Figure 14.6

We apply this algorithm to the PDA in Figure 14.6, obtaining an ex-
tremely large CFG. We hand simplify, by throwing away rules as well
as non-terminals that are never used. We further neaten the rules by
assigning shorter names to non-terminals as shown below:

Let A=[p,Z0,p], B=[p,Z0,q], C=[q,Z0,p], D=[q,Z0,q],
W=[p,(,p], X=[p,(,q], Y=[q,(,p], Z=[q,(,q].

Then we have the following rather bizzare looking CFG:

S -> A | B

A -> ( W A | ( X C
B -> ( W B | ( X D

W -> ( W W | ( X Y
X -> ( W X | ( X Z

W -> )
B -> e

How are we sure that this CFG is even close to being
correct?

We simplify the grammar based on the notions of generating and
reachable from the previous chapter. This process proceeds as follows:

1. Notice that C,D,Y,Z are not generating symbols (they can never
generate any terminal string). Hence we can eliminate production
RHS using them.

2. W and B are generating (W -> ) and B -> e).
3. X is not generating. Look at X -> ( W X. While ( is generating and

W is generating, X on the RHS isn’t generating – we are doing a
“bottom-up marking.” The same style of reasoning applies also to
X -> ( X Z.

4. Even A is not generating!

Therefore, in the end, we obtain a short (but still ‘bizzare looking’)
grammar:

S -> ( W S | e
W -> ( W W | )
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Fortunately, this grammar is now small enough to apply our verification
methods based on consistency and completeness:

Consistency: Any string s generated by S must be such that it has an
equal number of ( and ). Further, in any of its proper prefixes, the
number of ( is greater than or equal to the number of ).

Completeness: All such strings must be generated by S.

Proof outline for consistency:
Let us establish the ‘same number of ( and ) part. Clearly, e (ε)

satisfies this part. How about ( W S? For this, we must state and prove
a lemma about W:

Conjecture: W has one more ) than (.
True for both arms of W, by induction.
Hence, this conjecture about W is true.

Therefore, s has an equal number of ( and ).
Now, to argue that in any of the proper prefixes of s, the number of

( is greater than or equal to the number of ), we again need a lemma
about W:

Conjecture: In any prefix of a string generated by W, number of ) is
at most one more than the number of (.
This has to be proved by induction on W.

Hence, S satisfies consistency.

Completeness

To argue completeness with respect to S, we state and prove a com-
pleteness property for W.

All the following kinds of strings are generated by W: In any
prefix of a string generated by W, number of ) is at most one
more than the number of (.

The proof would proceed as illustrated in Figure 13.3. Now, the com-
pleteness of S may be similarly argued, as Exercise 14.1 requests.5

5 In fact, the plot will be simpler for this grammar, as there will be no zero-crossings.
There could be occasions where the plot touches the x-axis, and if it continues,
it promptly takes off in the positive direction once again.
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14.5 The Chomsky Normal Form

Given a context-free grammar G, there is a standard algorithm (de-
scribed in most textbooks) to obtain a context-free grammar G

′
in the

Chomsky normal form such that L(G
′
) = L(G) − {ε}. A grammar in

the Chomsky normal form has two kinds of productions: A → BC, as
well as A → a. If ε is required to be in the new grammar, it is explicitly
added at the top level via a production of the form S → ε. There is an-
other well-known normal form called the Greibach normal form (GNF)
which may be found discussed in various textbooks. In the GNF, all
the production rules are of the form A → aB1B2 . . . Bk where a is a
terminal and A,B1, . . . , Bk, for k ≥ 0, are non-terminals (with k = 0,
we obtain A → a). Obtaining grammars in these normal forms facili-
tates proofs, as well as the description of algorithms. In this chapter,
we will skip the actual algorithms to obtain these normal forms, focus-
ing instead on the advantages of obtaining grammars in these normal
forms.

A grammar G in the Chomsky normal form has the property that
any string of length n generated by G must be derived through exactly
2n− 1 derivation steps. This is because all derivations involve a binary
production A → BC or an unary production A → a. For example,
given the following grammar in the Chomsky normal form,

S -> A B | S S B -> b A -> a,

a string abab can be derived through a seven step (2×4−1) derivation

S => SS => ABS => ABAB => aBAB => abAB => abaB => abab.

In the next section, we discuss a parsing algorithm for CFGs, assuming
that the grammar is given in the Chomsky normal form.

14.5.1 Cocke-Kasami-Younger (CKY) parsing algorithm

The CKY parsing algorithm uses dynamic programming in a rather ele-
gant manner. Basically, given any string, such as 0 0 1, and a Chomsky
normal form grammar such as
S → S T | 0
T → S T | 1,
the following steps describe how we “parse the string” (check that the
string is a member of the language of the grammar):

• Consider all possible substrings of the given string of length 1, and
determine all non-terminals which can generate them.



14.5 The Chomsky Normal Form 263

• Now, consider all possible substrings of the given string of length
2, and determine all pairs of non-terminals in juxtaposition which
can generate them.

• Repeat this for strings of lengths 3, 4, . . ., until the full length of
the string has been examined.

1 2 30

(a) (b)0

b

d

1

e 3

0
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e f 3

Parsing string 0 0 1  with  these  positions  :     0     0     1  
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{S}

{} {S}

{S,T} {T} {T}{S,T}

{S} 2222

{S,T}

Fig. 14.7. Steps of the CKY parsing algorithm on input 001

To capture all this information, we choose a convenient tabular repre-
sentation as in Figure 14.7(a). The given string 001 has four positions
(marked 0 through 3) in it. Position a in the table represents the por-
tion of the string between positions 0 and 1, i.e., the first “0” in the
string. Likewise, positions c and f represent 0 and 1, respectively. Let
us fill these positions with the set of all non-terminals that can gener-
ate these strings. We know that S can generate a 0, and nothing else.
Therefore, the set of non-terminals that generates 0 happens to be {S}.
Likewise, {T} is the set of non-terminals that generate a 1. Filling the
table with these, we obtain Figure 14.7(b).

What can we say about position b in this table? It represents the
region in the string between positions 0 and 2. Which non-terminal can
generate the region of the string between positions 0 and 2? The answer
depends on which non-terminals generate the region of the string be-
tween positions 0 and 1, and which non-terminals generate the region
of the string between positions 1 and 2. We know these to be {S} and
{S}. The set of non-terminals that generate the substring 02 are then
those non-terminals that yield SS. Since no non-terminals yield SS, we
fill position b with {}. By a similar reasoning, we fill position e with
{S, T}. The table now becomes as shown in Figure 14.7(c).

Finally, position d remains to be filled. Substring 03 can be gener-
ated in two distinct ways:

• Concatenating substring 01 and 13, or
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• Concatenating substring 02 and 23.

Substring 01 is generated by {S} and substring 13 by {S,T}. There-
fore, substring 03 is generated by all the non-terminals that generate
{S}{S,T}, i.e., those that generate {SS,ST, i.e., {S,T}. No non-terminal
generates substring 02, hence we don’t pursue that possibility anymore.
Hence, we fill position d with {S,T} as in Figure 14.7(d).

The parsing succeeds because we managed to write an S in position
d—the start symbol can indeed yield the substring 03.

14.6 Closure and Decidability

In this section, we catalog the main results you should remember, plus
some justifications. Details are omitted for now.

1. Given a CFG, it is decidable whether its language is empty. Ba-
sically, if you find that S is not generating, the language of the
grammar is empty! It is the bottom-up marking algorithm discussed
above.

2. Given a CFG, it is not decidable whether its language is Σ∗.
3. The equivalence between two CFGs is not decidable. This follows

from the previous result, because one of the CFGs could easily be
encoding Σ∗.

4. Given a CFG, whether the CFG is ambiguous is not decidable.
5. Given a CFG, whether the CFG generates a regular language is not

decidable.
6. CFLs are closed under union, concatenation, and starring because

these constructs are readily available in the CFG notation.
7. CFLs are closed under reversal because we know how to “reverse a

CFG.”
8. CFLs are not closed under complementation, and hence also not

closed under intersection.
9. CFLs are closed under intersection with a regular language. This is

because we can perform the product state construction between a
PDA and a DFA.

10. CFLs are closed under homomorphism.

14.7 Some Important Points Visited

We know that if L is a regular language, then L is a context-free lan-
guage, but not vice versa. Therefore, the space of regular languages is
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properly contained in the space of context-free languages. We note some
facts below:

• It does not follow from the above that the union of two CFLs is
always a non-regular CFL; it is not so, in general. Think of {0n1n |
n ≥ 0} and the complement of this language, both of which are
context-free, and yet, their union is Σ∗ which is context-free, but
also regular.

• The union of a context-sensitive language and a context-free lan-
guage can be a regular language. Consider the languages Lww and
Lww of Section 13.4.1.

All this is made clear using a real-world analogy:

• In the real world, we classify music (compared to context-free lan-
guages) to be “superior” to white noise (compared to the regular
language Σ∗) because music exhibits superior patterns than white
noise.

• By a stretch of imagination, it is possible to regard white noise as
music, but usually not vice versa.

• By the same stretch of imagination, utter silence (similar to the
regular language ∅) can also be regarded as music.

• If we mix music and white noise in the air (they are simultaneously
played), the result is white noise. This is similar to taking {0n1n |
n ≥ 0} ∪ Σ∗ which yields Σ∗.

• However, if we mix music and silence in the air, the result is still
music (similar to taking {0n1n | n ≥ 0} ∪ ∅).

• Regular languages other than ∅ and Σ∗ ‘sound different.’ For in-
stance, {(01)n | n ≥ 0} ‘sounds like’ a square wave played through
a speaker. Therefore, the result of taking the union of a context-free
language and a regular language is either context-free or is regular,
depending on whether the strings of the regular language manage
to destroy the delicate patterns erected by the strings of the CFL.

It must also be clear that there are ℵ0 regular languages and the same
number of context-free languages, even though not all context-free lan-
guages are regular. This is similar to saying that not all natural numbers
are prime numbers, and yet both have cardinality ℵ0.

Illustration 14.7.1 Consider {ambmcm | m ≥ 0}. This is not a
CFL. Suppose it is a CFL. Let us derive a contradiction using the CFL
Pumping Lemma. According to this lemma, there exists a number n
such that given a string w in this language such that |w| ≥ n, we can
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split w into w = uvwxy such that |vx| > 0, |vwx| ≤ n, and for every
i ≥ 0, uviwxiy ∈ L(G).

Select the string anbncn which is in this language. These are the
cases to be considered:

• v, w, and x fall exclusively in the region “a”.
• v, w, and x fall exclusively in the region “b”.
• v, w, and x fall exclusively in the region “c”.
• v and x fall in the region “a” and “b”, respectively.
• v and x fall in the region “b” and “c”, respectively.

In all of these cases, “pumping” takes the string outside of the given
language. Hence, the given language is not a CFL.

Illustration 14.7.2 We illustrate the CKY parsing algorithm on string
aabbab with respect to the following grammar:

S -> AB | BA | SS | AC | BD
A -> a B -> b C -> SB D -> SA
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Fig. 14.8. Steps of the CKY parsing algorithm on input aabbab

The basic idea is to subdivide the string into “regions” and apply dy-
namic programming to “solve” all the shorter regions first, and use that
information to solve the “larger” regions. Let us build our table now.
The region 01 is generated by the set of non-terminals A. We just write
A below. We write likewise the other non-terminals (Figure 14.8(a)).
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The next table is obtained as follows: There is no non-terminal that
has a right-hand side of the production as AA. So we put a ∅ (phi)
at 02. Since S -> AB, A marks 12, and B marks 23, we put an S at
13. We proceed in the same manner for the remaining entries that are
similar. Last but not least, we write a C at 14, because 14 is understood
to be representing 12-24 or 13-34. 12-24 is A phi (A concatenated
with the empty language ∅), and so we ignore it. 13-34 is SB, and
C -> SB; therefore, we write “C” there. We fill the remaining table
entries similarly. The results are shown in Figure 14.8(b). The parsing
is successful if, in position “06”, you manage to write a set of non-
terminals that contain “S”. Otherwise, the parsing fails.

Illustration 14.7.3 Prove that any context-free grammar over a sin-
gleton alphabet generates a regular language.

We provide a proof sketch, leaving details to the reader (see [45,
page 86] for a full proof). To solve this problem, we can actually use
the Pumping Lemma for context-free languages in an unusual way! The
CFL Pumping Lemma says that for a long w (longer than some “k”),
we can regard w = uvxyz such that uvixyiz ∈ L. Each pump up via i
increases the length by v + y. However, since |vxy| ≤ k, there are only
a finite number of v+y’s we can get. These are the periodicities (in the
ultimate periodicity sense). If a set is described by a finite number of
periods p1, p2, . . ., it is easily described by the product of these periods.
This was the argument illustrated in Section 12.2 when we tackled a
regular language Pumping Lemma problem, and chose 0n 1n+n! to be
the initial string. In that problem, the n! we chose served as the product
of all the values possible for |y|. For instance, if a set S is such that

it has strings of a’s in it, and
S is infinite, and for a sufficiently large i,
– if ai ∈ S then ai+4 ∈ S as well as ai−4 ∈ S,
– if ai ∈ S then ai+7 ∈ S as well as ai−7 ∈ S,

then S is ultimately periodic with period 28.
Therefore, we conclude that any CFL over a singleton alphabet has

its strings obeying lengths that form an ultimately periodic set. This
means that the language is regular.

14.7.1 Chapter Summary – Lost Venus Probe

In this chapter, we examined many topics pertaining to PDAs and
CFGs: notions of acceptance, interconversion, and proofs of correct-
ness. We also examined simple parsing algorithms based on the Chom-
sky normal form of CFGs. The theory of context-free languages is one
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of the pinnacles of achievement by computer scientists. The theoret-
ical rigor employed has truly made the difference between “winging”
parsing algorithms—which are highly likely to be erroneous—versus
producing highly reliable parsing algorithms that silently work inside
programs. For instance, Hoare [55] cites the story of a Venus probe that
was lost in the 1960’s due to a FORTRAN programming error. The er-
ror was quite simple - in hindsight. Paraphrased, instead of typing a
“DO loop” as

DO 137 I=1,1000
...
137 CONTINUE,

the programmer typed

DO 137 I=1 1000
...
137 CONTINUE.

The missed comma caused FORTRAN to treat the first line as the
assignment statement DO137I=11000 — meaning, an assignment to a
newly introduced variable DO137I, the value 11000. The DO statement
essentially did not loop 1000 times as was originally intended! FOR-
TRAN’s permissiveness was quickly dispensed with when the theory
of context-free languages lead the development of “Algol-like” block-
structured languages.

Sarcastically viewed, progress in context-free languages has helped
us leapfrog into the era of deep semantic errors in programs, as op-
posed to unintended simple syntactic errors that caused programs to
crash. The computation engineering methods discussed in later chap-
ters in this book do help weed out semantic errors, which are even
more notoriously difficult to pin down. We hope for the day when even
these errors appear to be as shallow and simpleminded as the forgotten
comma.

Exercises

14.1. Argue the consistency and completeness of S and W.

14.2. The following “optimization” is proposed for the PDA of Fig-
ure 14.1: merge states q0 and q1 into a new state q01; thus, (i) q01
will now be the start state, and (ii) for any move between q0 and q1 or
from q1 to itself, now there will be a q01 to q01 move. Formally argue
whether this optimization is correct with respect to the language L0; if
not, write down the language now accepted by the PDA.
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14.3. Argue the remaining cases of the proof in Section 14.2, namely
the direct q2 to q2 traversal, and the q2 to q3 to q4 to q2 traversal.

14.4. Prove one more case not covered in Exercise 14.3; prove that
the language of this PDA cannot go outside the language of regular
expressions a∗ b∗.

14.5. Consider the following list of languages, and answer the questions
given below the list:

• Laibjck =

{aibjck | i, j, k ≥ 0 and if odd(i) then j = k}.

In other words, if an odd number of a’s are seen at first, then an
equal number of j’s and k’s must be seen later.
• Lbjckai =

{bjckai | i, j, k ≥ 0 and if odd(i) then j = k}.

• Laibjckdl =

{aibjckdl | i, j, k, l ≥ 0 and if odd(i) then j = k else k = l}.

• Lbjckdlai =

{bjckdlai | i, j, k, l ≥ 0 and if odd(i) then j = k else k = l}.

1. Which of these languages are deterministic context-free?
2. Which are context-free?
3. Write the pseudocode of a parsing algorithm for the strings in this

language. Express the pseudocode in a tabular notation similar to
that in Figure 14.1.

4. For each language that is context-free, please design a PDA and
express it in a tabular or graphical notation.

5. For each language that is context-free, please design a CFG.
6. For each of these CFGs, convert each to a PDA using the CFG to

PDA conversion algorithm.

14.6. Prove using Floyd’s method that the PDA of Figure 14.1 is cor-
rect.
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14.7. Convert the following PDA to a CFG:

delta contains
----------------------
<p,(,z0> <q,(z0>
<q,(,(> <q,((>
<q,),(> <q,e>
<p,e,z0> <r,e>
<q,e,z0> <r,e>

14.8.
1. Develop a PDA for the language

w | w ∈ {0, 1}∗ ∧ #0(w) = 2 × #1(w)}

In other words, w has twice as many 0’s as 1’s.
2. Prove this PDA correct using Floyd’s method
3. Convert this PDA into a CFG
4. Simplify the CFG
5. Prove the CFG to be correct (consistent and complete)


