
CS 3100 – Models of Computation – Fall 2011 – Notes for L18

A CFG is a structure (N, Σ, P, S) where N is a set of symbols known as non-terminals, Σ is a set of symbols
known as terminals, S ∈ N is called the start symbol, and P is a finite set of production rules of the form
L→ R1 R2 . . . Rn,.

A sentential form is a string over N ∪ Σ, and is obtained by starting from S and applying production rules
to expand S. If we get rid of all of N , we call the resulting sentential form a sentence. Each such expansion step
is called a derivation step. Sequences of derivation steps are called a derivation sequence. A leftmost derivation
sequence is one where the leftmost non-terminal is expanded at every stage. The language of a CFG can be
defined as follows:

L(G) = {w | S ⇒∗ w ∧ w ∈ Σ∗}.

Let us denote a derivation step by ⇒ and a derivation sequence by ⇒∗. Consider grammar G4 with these
productions: S → SS | 1 | 0. Then, a string 110 can now be derived in two ways:

• Through the leftmost derivation S ⇒ SS ⇒ 1S ⇒ 1SS ⇒ 11S ⇒ 110, or
• Through the rightmost derivation S ⇒ SS ⇒ S0⇒ SS0⇒ S10⇒ 110.

These yield different parse trees. This is an ambiguous grammar. An ambiguous grammar is one for which there
is at least one sentence for which there exist two distinct parse trees. Since parse trees ascribe meanings to
sentences, we don’t want to admit even one sentence with two meanings (two parse trees)—hence the importance
of this concept.

The interesting thing is that there exist inherently ambiguous languages—languages for which all CFGs are
ambiguous. Here is an example:

L = {aibjck | i = j ∨ j = k}

Let us design one CFG for this language. The approach to designing a CFG is similar to how you program
recursively: break the language description into simpler recursive cases that are glued together using union and
concatenation. Each time you erect a pattern, you “grow” the language inside-out:

Language aEQbORbEQc:

S -> Mab Cs | As Mbc

Mab -> a Mab b | epsilon

Mbc -> b Mbc c | epsilon

Cs -> c Cs | epsilon

As -> a As | epsilon

One way to understand how these grammars “work” is by seeing how to build push-down automata which
are machines that describe context-free languages.
Before we present a PDA for the above language aEQbORbEQc, here are some standard definitions, and some
theorems:

• A language is said to be context-free if there is a context-free grammar describing it.

1



• Equivalently, a language is said to be context-free if there is a push-down automaton describing it.

• A CFG can be converted into a language-equivalent PDA

• A PDA can be converted into a language-equivalent CFG

• NPDA are different from DPDA; non-determinism makes a difference

• CFGs (“NCFG”) are non-equivalent to DCFGs

• CFLs are closed under union, concatenation, Kleene-star, and reversal

• CFLs are not closed under intersection or complementation

0.1 First Attempt at a PDA for aEQbORbEQc

0.2 Second Attempt at a PDA for aEQbORbEQc

0.3 Standard CFG to PDA Conversion Illustrated on aEQbORbEQc CFG

1 Consistency, Completeness, Redundancy

Now consider grammar G5 with production rules

Grammar G5:
S → aSbS | bSaS | ε.

The terminals are {a, b}. What CFL does this CFG describe? It is easy to see that in each replacement step,
an S is replaced with either ε or a string containing an a and a b; and hence, all strings that can be generated
from G5 have the same number of a’s and b’s. Can all strings that contain equal a’s and b’s be generated using
G5? We visit this (much deeper) question in the next section. If you try to experimentally check this conjecture
out, you will find that no matter what string of a’s and b’s you try, you can find a derivation for it using G5 so
long as the string has an equal number of a’s and b’s.

Note: We employ ε, e, and epsilon interchangeably, often for the ease of type-setting.

Consider the following CFG G6 which has one extra production rule compared to G5:

Grammar G6:
S → aSbS | bSaS | SS | ε.

As with grammar G5, all strings generated by G6 also have an equal number of a’s and b’s. If we identify this
property as consistency, then we find that grammars G5 and G6 satisfy consistency. What about completeness?
In other words, will all such strings be derived? Does it appear that the production S → SS is essential to
achieve completeness? It turns out that it is not - we can prove that G5 is complete, thus showing that the
production S → SS of G6 is redundant.

How do we, in general, prove grammars to be complete? The general problem is undecidable,1 However,
for particular grammars and particular completeness criteria, we can establish completeness, as we demonstrate
below.

1The undecidability theorem that we shall later show is that for an arbitrary grammar G, it is not possible to establish whether
L(G) is equal to Σ∗.

2



b , b ; bb

λ ,
 λ 

; λ

b , a ; λ

λ , λ ; λ

b , a ; λ

λ , Z ; λ

a , Z ; aZ c , λ ; λ

b , Z ; bZ

c , b ; λ

a , a ; aa

λ , Z ; λ

a , Z ; Z

c , b ; λ

q0

q1

MabThenCs

q2

AsThenMbc

q3 q4

q5 q6 q7

This machine is not quite right wrt the language {a^i b^j c^k | i,j,k >= 0, i=j OR j=k}. Fix it! 

Figure 1: An incorrect PDA for aEQbORbEQc

3



λ , Z ; λ

c , λ ; λ

b , a ; λ

a , a ; aa
b , a ; λ

c , b ; λb , b ; bba , Z ; Z

λ , λ ; λ

a , Z ; aZ

λ , Z ; λ

λ ,
 λ 

; λ

b , Z ; bZ c , b ; λ

λ , λ ;
 λ

q0

q1

MabThenCs

q2

AsThenMbc

q3 q4

q5 q6 q7

This is the result of fixing the PDA in class.

Figure 2: Corrected PDA for aEQbORbEQc

4



λ , S ; AN

λ , A ; λ
λ , C ; λ

λ , Z ; λ

λ , M ; λ
λ , S ; MC

λ , A ; aA

b , b ; λ

λ , N ; bNc

λ , 
Z ; SZ

c , c ; λ

λ , N ; λ

λ , M ; aMb

λ , C ; cC

a , a ; λ

q0

q1
q2

Figure 3: PDA obtained by direct conversion from CFG

5



a

  
a

a

a

 b  

 b 

a

 b
 
 b

 b

0 1 2 3 4 3 2 3 2 1 0

S

epsilon

a
b

S

S

Figure 4: A string that does not cause zero-crossings. The numbers below the string indicate the running
difference between the number of a’s and the number of b’s at any point along the string

6



a

a

a
 b

  b

a
   b

 b

 b

 b
  b

 b

a

a

 b

a

 b

a

a

a

0 1 2 3 2 1 2 1 0 −2 −3 −4 −3 −2 −3 −2 −3 −2  0

S S

b
a

S

Figure 5: A string that causes zero-crossings

7



Proof of completeness: The proof of completeness typically proceeds by induction. We have to decide
between arithmetic or complete induction; in this case, it turns out that complete induction works better.
Using complete induction, we write the inductive hypothesis as follows:

Suppose G5 generates all strings less than n in length having an equal number of a’s and b’s.

Consider now a string of length n + 2 – the next longer string that has an equal number of a’s and b’s. We
can now draw a graph showing the running difference between the number of a’s and the number of b’s, as in
Figure 3 and Figure 4. This plot of the running difference between #a and #b is either fully above the x-axis,
fully below, or has zero-crossings. In other words, it can have many “hills” and “valleys.” Let us perform a
case analysis:

1. The graph has no zero-crossings. There are further cases:

(a) it begins with an a and ends with a b, as in Figure 3.

(b) it begins with a b and ends with an a (this case is symmetric and hence will not be explicitly argued).

2. It has zero-crossings, as in Figure 4. Again, we consider only one case, namely the one where the first
zero-crossing from the left occurs after the curve has grown in the positive direction (i.e., after more a’s
occur initially than b’s).

Let us consider case 1a. By induction hypothesis, the shorter string in the middle can be generated via S. Now,
the entire string can be generated as shown in Figure 3 using production S -> aSbS, with a matching the first
a, the first S matching ‘the shorter string in the middle,’ the b matching the last b in the string, and the second
S going to ε. Case 1b may be similarly argued. If there is a zero-crossing, then we attack the induction as
illustrated in Figure 4, where we split the string into the portion before its last zero-crossing and the portion
after its last zero-crossing. These two portions can, by induction, be generated from G5, with the first portion
generated as aSb and the second portion generated as an S, as in Figure 4.

Illustration 1.1 Consider

Lambnck = {ambnck | m, n, k ≥ 0 and ((m = n) or (n = k))}

Develop a context-free grammar for this language. Prove the grammar for consistency and completeness.
Solution: The grammar is given below. We achieve “equal number of a’s and b’s” by growing “inside out,”
as captured by the rule M -> a M b. We achieve zero or more c’s by the rule C -> c C or e. Most CFGs get
designed through the use of such “idioms.”

S -> M C | A N

M -> a M b | e

N -> b N c | e

C -> c C | e

A -> a A | e

Consistency: No string generated by S must violate the rules of being in language Lambnck . Therefore, if M
generates matched a’s and b’s, and C generates only c’s, consistency is guaranteed. The other case of A and N
is very similar.

8



Notice that from the production of M, we can see that it generates matched a’s and b’s in the e case.
Assume by induction hypothesis that in the M occurring on the right-hand side of the rule, M -> a M b, respects
consistency. Then the M of the left-hand side of this rule has an extra a in front and an extra b in the back.
Hence, it too respects consistency.
Completeness: We need to show that any string of the form anbnck or akbncn can be generated by this
grammar. We will consider all strings of the kind anbnck and develop a proof for them. The proof for the case
of akbncn is quite similar and hence is not presented.

We resort to arithmetic induction for this problem. Assume, by induction hypothesis that the particular
2n + k-long string anbnck was derived as follows:

• S ⇒ M C.
• M ⇒∗ anbn through a derivation sequence that we call S1, and
• C ⇒∗ ck through derivation sequence S2.
• S⇒ M C⇒∗ anbn C⇒∗ anbn ck. Notice that in this derivation sequence, the first⇒∗ derivation sequence
is what we call S1 and the second ⇒∗ derivation sequence is what we call S2.

Now, consider the next legal longer string. It can be either an+1bn+1ck or anbnck+1. Consider the goal of
deriving an+1bn+1ck. This can be achieved as follows:

• S ⇒ M C ⇒ a M b C.
• Now, invoking the S1 sequence, we get ⇒∗ a anbn b C.
• Now, invoking the S2 sequence, we get ⇒∗ a anbn b ck; and hence, we can derive an+1bn+1ck.

Now, anbnck+1 can be derived as follows:

• S ⇒ M C ⇒ M c C.
• Now, invoking the S1 derivation sequence, we get ⇒∗ anbn c C.
• Finally, invoking the S2 derivation sequence, we get ⇒∗ anbn ck+1.

Hence, we can derive any string that is longer than anbnck, and so by induction we can derive all legal strings.

9


	First Attempt at a PDA for aEQbORbEQc
	Second Attempt at a PDA for aEQbORbEQc
	Consistency, Completeness, Redundancy

