
12

The ‘Pumping’ Lemma

Theorem 10.3 reiterates why regular languages are so called – their
strings are “regular” in length. This fact can be taken advantage of
in reasoning about languages. The specific approach taken is based on
the fact that long strings meandering through finite-state structures
cannot avoid revisiting states. Hence, if such a string goes from the
start state to a final state, one can traverse the loop described by the
re-visitation an arbitrary number of times, including zero times, and
find other strings that also go from the start to the same final state.
Expressed rigorously, this idea forms the basis of showing that certain
languages are not regular, and takes the curious name of the “Pumping”
Lemma.

The most common usage comes in the form of incomplete Pumping
Lemmas or one-way Pumping Lemmas that help prove that certain
languages are not regular. There are also complete Pumping Lemmas
that can help prove that certain languages are regular. We now discuss
one incomplete Pumping Lemma in depth and show many usages of
the same. This will be followed by a brief discussion of one complete
Pumping1 Lemma.

12.1 Pumping Lemmas for Regular Languages

One incomplete Pumping Lemma for regular languages is as follows.
If a language L is regular, then there exists a number n (typically
equal in magnitude to the number of states of the minimal DFA D
of L) such that for any string w ∈ L exceeding n in length, w will
have a loop somewhere in it. More specifically, when a DFA makes n

1 Rumor has it that this is the most favorite lemma of a certain California governor.

Ganesh Gopalakrishnan
THESE PAGES ARE PROVIDED PURELY FOR CLASS-ROOM USE BY
CS 3100 STUDENTS TAKING MY FALL 2011 OFFERING
PLEASE DISCARD AFTER THIS CLASS IS OVER. THANKS.

EXCERPTS FROM MY SPRINGER 2006 BOOK
"COMPUTATION ENGINEERING: APPLIED AUTOMATA THEORY AND LOGIC"

Ganesh Gopalakrishnan

Ganesh Gopalakrishnan

206 12 The ‘Pumping’ Lemma

state transitions, it must go through n + 1 states;2 all of these states
cannot be distinct (since there are altogether only n states). This causes
the DFA to revisit at least one state, thus describing a path such as
s1, s2, . . . , si, . . . , si, . . . , sn+1. Now, break w into three distinct pieces.
Let x be the maximal prefix of w in which no states repeat (s1, . . . , si

in our example). Following x, we will have a segment of w that begins
and ends at some specific state; this segment would form a loop, such
as si, . . . , si in our example. Call this segment y. Now, the rest of w
is considered to be the string z, which leads w to one of the accepting
states s ∈ F of D. It is then clear that the portion y can be repeated
any number k ≥ 0 of times in going to s, thus ensuring that strings of
the form xykz are also in L. Using mathematical logic, and following
Lamport’s style, discussed on Page 79 in Chapter 5, we write:

Regular(L) ⇒
∃n ∈ N :
∀w ∈ L : |w| ≥ n

⇒
∃x, y, z ∈ Σ∗ :
∧ w = xyz
∧ y '= ε
∧ |xy| ≤ n
∧ ∀k ≥ 0 : xykz ∈ L.

Illustration 12.1.1 (Quantifier alternation) The Pumping Lemma
resembles the following example English assertion: “A zoo Z is inter-
esting if forall giraffes g in Z whose right rear leg is more than n feet
in length, there exists a reticulation patch on g’s skin of exactly

√
n

feet circumference, such that within this reticulation patch, forall hair
h, the color of h is brown.”

To show that Z is uninteresting, we have to find one giraffe of height
≥ n such that for all patches, either the patch is not

√
n feet in cir-

cumference, or (it is, and) there exists a non-brown hair in it.

To use the incomplete Pumping Lemma in proving that a language
Lsuspect is non-regular, we proceed as follows. Assume Regular(Lsuspect).
Then, use the incomplete Pumping Lemma, obtaining as a consequence,
the following formula C:3

2 If the n moves are compared to n webs on the foot of a duck, then the duck must
have n + 1 digits!

3 Note that C, being a fully quantified formula, or sentence, is either true or false.

12.1 Pumping Lemmas for Regular Languages 207

∃n ∈ N :
∀w ∈ Lsuspect : |w| ≥ n

⇒
∃x, y, z ∈ Σ∗ :
∧ w = xyz
∧ y '= ε
∧ |xy| ≤ n
∧ ∀k ≥ 0 : xykz ∈ Lsuspect.

Now, we try to show that formula C is false (or that ¬C is true). If we
succeed in doing so, we can conclude using proof by contradiction that
¬Regular(Lsuspect). What does showing ¬C involve? Let D = ¬C. We
can now write D as follows:

∀n ∈ N :
∃w ∈ Lsuspect : |w| ≥ n

∧
∀x, y, z ∈ Σ∗ :
∨ w '= xyz
∨ y = ε
∨ |xy| > n
∨ ∃k ≥ 0 : xykz /∈ Lsuspect.

Now, our goal is to show that D is true (if we were to achieve this goal,
we would have proved ¬C, or that ¬Regular(Lsuspect)), which is our
original proof goal. To make D true, we must clearly satisfy the “bullet
disjunction” embedded in it. That disjunction would be made true by
making any one of the following disjuncts true for every x,y,z ∈ Σ∗:

1. pick x, y, z such that w '= xyz,
2. pick y = ε,
3. pick x, y such that |xy| > n, or
4. find a k ≥ 0 such that xykz /∈ Lsuspect.

Now, for many x, y, z, it will be possible to satisfy one of disjuncts 1
or 3. This is clear because we can quite easily find xyz '= w, find
y = ε, or find xy, such that |xy| > n. So we don’t even bother with
these selections of x, y, z in the rest of this sequel. What about x, y, z
that falsify disjuncts 1 through 3? For that case, we must find a k ≥ 0
such that xykz /∈ Lsuspect. That surviving case is now spelled out fully,
below. This listing incorporates the fact that the first three disjuncts
are false.

208 12 The ‘Pumping’ Lemma

Pumping recipe: These steps below constitute the Pumping
recipe we shall follow in attacking problems using the Pumping
Lemma.

PR1: Consider x, y, z such that w = xyz and y '= ε (thus falsifying
disjuncts 1 and 2), and ensure that |xy| ≤ n (look for a loop within
the first n moves in w), thus falsifying disjunct 3.

PR2: Find a k ≥ 0 such that xykz /∈ Lsuspect (thus satisfying dis-
junct 4).

One should, however, bear in mind the following frequently
committed mistake, and avoid it:

If, instead of showing that formula C of page 206 is false, one
ends up showing C, i.e, that C is true, then we cannot draw
any conclusion about Lsuspect. It could either be regular or non-
regular! Refer to the discussion on page 74 around proving 5 = 5.

We shall now illustrate these steps as well as related methods with
several examples.

Illustration 12.1.2 Example: Consider L = {0m10m1 | m ≥ 0}. To
show L is not regular:

PR1:
1. Choose w = 0n10n1.
2. Choose y '= ε.
3. Choose x, y, such that |xy| ≤ n – aha! Observe that y must

contain a 0.
PR2:

1. Now, does there exist a k ≥ 0 such that xykz /∈ L?
2. Sure! For k = 0, we lose one 0, giving rise to a string of the form

0m1n where m < n. This satisfies the “D formula” associated
with this example. Hence, L is not regular.

Illustration 12.1.3 Example: Consider L = {10m10m | m ≥ 0}. To
show L is not regular:

PR1:
1. Choose w = 10n10n.
2. Choose y '= ε.
3. Choose x, y, such that |xy| ≤ n.

PR2:
1. We have three choices for y:

a) y = 1,

12.1 Pumping Lemmas for Regular Languages 209

b) y = 10l for l < n, or
c) y = 0l for 0 < l < n.

2. Does there exist a k ≥ 0 such that xykz /∈ L for all these choices?
3. Sure!

a) For y = 1, choose k = 0 (other choices work too; see Exer-
cise 12.5).

b) y = 10l for l < n, choose k = 0 (other choices work too).
c) y = 0l for 0 < l < n also, choose k = 0 (other choices work

too).
d) In all these cases, the assertion ∃ k ≥ 0 such that xykz /∈ L

is satisfied.
e) Therefore, we get full contradiction, and hence L is not reg-

ular.

12.1.1 A stronger incomplete Pumping Lemma

There is a stronger version of the Pumping Lemma which allows strings
“in the middle” to be pumped. We now state this Pumping Lemma
semiformally, and illustrate its power on a simple example:

Regular(L) ⇒
∃n ∈ N :
∀w ∈ L : |w| ≥ n

⇒
∀x, y, z ∈ Σ∗ :
∧ w = xyz
∧ |y| ≥ n
∃u, v,w ∈ Σ∗ :
∧ v '= ε
∧ ∀k ≥ 0 : xuvkwz ∈ L.

As can be seen, the pumping can occur “in the middle.”

Illustration 12.1.4 Consider the language Lif defined on page 212.
By applying the ordinary Pumping Lemma, we cannot derive a con-
tradiction starting from string abncn because the possibilities include
x = ε, y = a, and z = bncn, and by pumping y, we do not go outside the
language. However, with the stronger Pumping Lemma, we can pick x,
y, and z suitably, with |y| ≥ n. Observe that by letting x be a, we can
situate u, v,w in the bncn region, obtaining a violation in all cases.

210 12 The ‘Pumping’ Lemma

12.2 An adversarial argument

The Pumping Lemma provides a concrete setting to understand adver-
sarial arguments. Consider proving, directly using the Pumping Lemma,
that the language

L = {0i1j | i '= j}

is not regular. Here is how the proof goes as an adversarial argument.
Suppose an adversary (Y) claims that this is a regular language. You
(U) want to prove it is not. Here is how you can argue and win:

1. U: “OK if L is regular, you have a DFA D with you right?”
2. Y: “Yes.”
3. U: “How many states in it?”
4. Y: “n”.
5. U: “OK, describe to me the sequence of states that D goes through

upon seeing the first n symbols of the string 0n1(n+n!).” Here, n is
chosen to be the number of states in D. Since n '= (n + n!), this
string surely must be in L. (The choice of (n + n!) as the exponent
of 1s is rather purposeful — and very astute on the part of U — as
we shall see momentarily).

6. Y (Straight-faced): “It visits s0, s1, . . ., all of which are different
from one another.”

7. U: (Red-faced): “Lie! If there are n states in your DFA, then seeing
n symbols, the DFA must have traversed a loop, and hence you
must have listed two states that are the same. Don’t you know that
this follows from the pigeon-hole principle?”

8. Y: (Blue-faced): “OK, you are right, it is “s0, s1, . . . , si, si+1, si+2, . . . ,
. . . , si, sj” Notice that si is repeating in such a sequence.

9. U: “Aha! I’m going to call the pieces of the above sequence as
follows.”
a) the piece that leads up to the loop, s0, s1, . . . , si, will be called

x,
b) the piece that traverses the loop, si, si+1, si+2, . . . , si, will be

called y, and
c) the piece that exits the loop and visits the final state, si, sj . . .,

will be called z.
“You may pick any such x, y, z and I’m going to confound you.”

10. Y: “How?”
11. U: “Watch me!” (private thoughts of U now follow...)

a) Since I have no idea what |y| is, I must ensure that by pumping
y, no matter what its length, I should be able to create a string
of 0s equal in length to (n + n!).

12.3 Closure Properties Ameliorate Pumping 211

b) So, by pumping, if I can create an overall string 0(n+n!)1(n+n!),
I would have created the desired contradiction.

c) The initial distribution of 0s along the path xyz is as follows:
i. x has |x| 0s,
ii. y has |y| 0s, and
iii. z has (n − |y|− |x|) 0s.

d) Hence, by pumping y k-times, for integral k, we must be able
to attain n + n! = |x| + k × |y| + (n − |y|− |x|).

e) Simplifying, we should be able to satisfy n! = (k − 1)|y|. Since
|y| ≤ n, such a k exists!

12. U now begins his animated conversation: “See the above argument. I
can now pump up the y of your string k times where k = n!/|y| + 1.
Then you get a string 0n+n!1n+n! that is not in L. This path also
exists in your DFA. So your DFA cannot be designed exactly for
L— it also accepts illegal strings. Admit defeat!”

13. Y: Tries for an hour, furiously picking all possible x, y, z and goes
back to step 8. For each such choice, U defeats Y4 in the same
fashion. Finally Y admits defeat.

14. U: “Thank you. Next victim please.”

12.3 Closure Properties Ameliorate Pumping

The use of closure properties can simplify the application of the Pump-
ing Lemma. However, caution is to be exercised to avoid unsound ar-
guments. We now provide a few illustrations and exercises. First, let us
rework Problem 12.1.3 as follows:

1. The reverse of L = {10m10m | m ≥ 0} is L
′
= {0m10m1 | m ≥ 0}

2. Now, L
′
was proved to be not regular in Problem 12.1.2

3. Since reverse preservers regularity, the original language L isn’t
regular either.

As a general approach, here is how we use regularity preserving oper-
ations to help make our arguments:

1. Suppose M ∩ L(0∗ 1∗) = N
2. Suppose we can show (thru Pumping Lemma) that N is not regular
3. Then we can conclude that M is not regular.

4 I promise to make Y win in my next two books—and meanwhile, offer to put
replacement pages on my web-page for the benefit of anyone wishing that Y
trounce U in this very book!

212 12 The ‘Pumping’ Lemma

Here is an abuse of the incomplete Pumping Lemma (from [111]).
Consider the language

Lif = {aibjck | i ≥ 0, j, k > 0, and if i = 1 then j = k}.

While this language is not regular, we can still show that the C formula
of page 206 that results from the incomplete Pumping Lemma will be
a tautology (“can pump k without causing any violations”). This is
because

PR1: for every choice of w of the form aibjck, and a way to split it into
x, y, z that abide by the PR1 conditions,

PR2: we must find a k ≥ 0 such that xykz /∈ Lsuspect. Basically, for any
such x, y, z, there must always be a choice of y such that pumping
causes us to stay in the language Lsuspect, thus deriving no con-
tradictions. Exercise 12.8 asks you to spell out this argument, and
offers another attack on the same problem.

12.4 Complete Pumping Lemmas

There are many complete Pumping Lemmas of the form “Regular(L) if
and only if conditions,” i.e., a language is regular if and only if certain
conditions hold. We present two popular versions, one due to Jaffe [65]
and the other due to Stanat and Weiss [113]. Possible uses of these
complete Pumping Lemmas include showing that certain languages are
regular (we do not pursue such proofs of regularity in this book).

12.4.1 Jaffe’s complete Pumping Lemma

For a language L over a finite alphabet Σ, Jaffe’s Pumping Lemma is
the following:

Regular(L) ⇔
∃k ∈ N :
∀y ∈ Σ∗ : |y| = k

⇒
∃u, v,w ∈ Σ∗ :
∧ y = uvw
∧ v '= ε
∧ ∀z ∈ Σ∗ :

∀i ∈ N : (yz ∈ L ⇔ uviwz ∈ L).

12.4 Complete Pumping Lemmas 213

Notice that for a “long string” y = uvw with a pump-able middle
portion v, it is expressed that we can follow the original string y with
an arbitrary z and stay within L, if and only if we can pump the middle
and still follow it with that same z and stay within L. In [65], a proof
of this Pumping Lemma is provided.

12.4.2 Stanat and Weiss’ complete Pumping Lemma

For a language L over a finite alphabet Σ, Stanat and Weiss’ Pumping
Lemma is the following:

Regular(L) ⇔
∃p ∈ N :
∀x ∈ Σ∗ : |x| ≥ p

⇒
∃u, v,w ∈ Σ∗ :
∧ x = uvw
∧ v '= ε
∧ ∀r, t ∈ Σ∗ :

∀i ∈ N : (rut ∈ L ⇔ ruvit ∈ L).

Notice that this Pumping Lemma does not require the pump-able
string to be part of the prefix; an arbitrary string r can lead off, and
an arbitrary tail t can follow. In [113], a proof of this Pumping Lemma
using Jaffe’s Pumping Lemma is provided.

Chapter Summary

We discuss the so-called Pumping Lemmas that characterize regular
sets. We also discuss operations that preserve regularity; given one or
more sets, these operations are guaranteed to deliver only regular sets.
This chapter shows how one may exploit these facts to disprove that
certain languages are not regular. For the sake of completeness, we
also very briefly discuss the so-called complete Pumping Lemmas that
actually help establish that certain languages are regular. While we do
not utilize these complete Pumping Lemmas to carry out any proofs,
the fact that such lemmas exist is important to know.

Exercises

12.1. Argue that Lbadd is non-regular, where Lbadd is almost similar to
Ladd of Exercise 10.6 except for what is shown below:

Lbadd = {a0a1 . . . ak−1b0b1 . . . bk−1c0c1 . . . ck−1 | . . . same . . .}

214 12 The ‘Pumping’ Lemma

12.2. Consider the example language of Section 12.2 again:

L = {0i1j | i '= j}.

Using closure properties, show that this set is not regular.

12.3. Prove that if L is not regular, then LL is also not regular.

12.4. L0n1n = {0n1n | n ≥ 0} is easily shown to be non-regular. Now,
show

Leq = {x | x ∈ {0, 1}∗ and #0(x) = #1x}

is not regular. (Hint: intersection with 0* 1*).

12.5. Show how to solve the problems presented in Illustration 12.1.2
and 12.1.3 by choosing a k '= 0. Write out the complete proof using
such k values.

12.6. What’s wrong with this argument?

1. Suppose M ∩ L(0∗ 1∗) = N .
2. Suppose we can show (through Pumping Lemma) that M is not

regular.
3. Conclude that N is not regular.

12.7. Among the assertions below, identify those that are true, and
justify them. For those that are false, provide a counterexample.

1. The union of two non-regular sets is always non-regular.
2. The intersection of two non-regular sets is always non-regular.
3. A regular set can have a non-regular subset.
4. A regular set can have a non-regular superset.
5. Every regular set has a regular subset.
6. The star of a non-regular set can never be regular.
7. The prefix-closure of a non-regular set can never be regular.
8. The reverse of a non-regular set can never be regular.
9. The union of a regular and a non-regular set can be regular.

10. The union of a regular and a non-regular set can be non-regular.
11. The concatenation of a regular and a non-regular set can sometimes

be regular.
12. There is a finite non-regular set.
13. It is possible to apply a homomorphism to turn a non-regular set

into a regular set.

12.4 Complete Pumping Lemmas 215

12.8. Consider the language Lif of page 12.3. Show that using the ini-
tial incomplete Pumping Lemma, we can pump, i.e., prove the Pumping
Lemma condition C to be true, thus being unable to conclude anything.
Now, apply a closure property and use the incomplete Pumping Lemma
to show that Lif is non-regular.

12.9. Using the stronger incomplete Pumping Lemma of Section 12.1.1,
show that Lif is non-regular.

12.10. Prove the following languages to be non-regular:

1. Lsq = {0i2 | i ≥ 0}.
2. L() = {x | x ∈ {(,)}∗ and x is well − parenthesized}.
3. The set of palindromes over {0, 1}∗ is not regular.

The definition of well-parenthesized is as follows (see also page 224):

1. The number of (and) in x is the same.
2. In any prefix of x, the number of (is greater than or equal to the

number of).

