1. In a DFA long paths are loopy paths.

2. In any DFA of N states, consider an accepting path p of some length. Consider a sub-path q of p of length N.

p describes some string x
q describes some string y

\[p = p_0 \xrightarrow{x_1} p_1 \cdots \xrightarrow{x_m} p_{m-1} \xrightarrow{x_{m+1}} p_m \]

\[q = p_k \xrightarrow{y_1} p_{k+1} \cdots \xrightarrow{y_N} p_{l-1} \xrightarrow{y_{N+1}} p_l \]

Then one of $p_k \ldots p_l$ are the same state!

Call it p_m
Call the portion leading up to $p_n = u$

Call the p_k to p_r loop $= v$

All the first p_m... REVISIT to $p_m = w$

Then

- $u \in L$
- $ww \in L$ because $x \in L$
- $w^2w \in L$
- $w^n \in L$ for $n \geq 0$
Consider
\[L_{2p} = \{ \varepsilon, (), (()) \} \]
\[L_{3p} = \{ \varepsilon, (), (()) , ((()))) \} \]
\[L_{100p} = \{ \varepsilon, (), \ldots , (^{100})^{100} \} \]
All of these have DFAs!

But suppose someone claims that
\[L_{loop} \text{ has a DFA } \rightleftharpoons \text{ Loop } \]
\[L_{loop} = \{ \varepsilon \ (\)^{n} \mid n \geq 0 \} \].

Then merely ask that person "how many states in that DFA"? Suppose they say "N".
Then consider \((N)^{N} \)
Clearly \((N)^{N} \in L(\text{Loop}) \).

Consider \(\rightarrow P_{0} \rightarrow \text{ (B) } \).
Clearly Fa is a state in this path.

We don't know what exactly things look like — EXCEPT:

\[w = i \quad \text{for some } i \geq 0 \]

\[n^* = j^* \quad \text{for some } j^* \geq 1 \]

\[w = \text{whores! some (but then)} \]
But now

A1. ∀w ∈ L(Doop)
A2. w w w ∈ L(Doop)
A3. w w ∈ L(Doop)

A1 is fine.

A2 is a contradiction!

If you want more then

A3 is a contradiction!

So Doop can't exist.

"(If it exists, it can't be for language L_{Doop} ! !)"

Treating (= 0 and) = 1, we see that

\[L_{\text{on}n} = \sum_{i=1}^{n} | n \geq 0 \] not regular as well !
\[L_{eq01} = \{ w \mid w \in \{0,1\}^* \text{ and } \#_0(w) = \#_1(w) \} \]

\[10/18/11 \]

L_{eq01} not regular!

Proof 1:

Suppose L_{eq01} reg.

Then FA L_{eq01}.

Clearly FA D_{0*1*}

But then L_{eq01} \cap D_{0*1*} = D₀₁ non-\text{CONS}

Proof 2: Choose an \text{w} in L_{eq01}

Proceed to contradiction.

\[L_{abc} = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and if odd } (i) \text{ then } j = k \} \]

- Hmm!

Consider now \text{Rev}(L_{abc})