
13

Context-free Languages

A context-free language (CFL) is a language accepted by a push-down
automaton (PDA). Alternatively, a context-free language is one that
has a context-free grammar (CFG) describing it. This chapter is mainly
about context-free grammars, although a brief introduction to push-
down automata is also provided. The next chapter will treat push-down
automata in greater detail, and also describe algorithms to convert
PDAs to CFGs and vice versa. The theory behind CFGs and PDAs
has been directly responsible for the design of parsers for computer
languages, where parsers are tools to analyze the syntactic structure
of computer programs and assign them meanings (e.g., by generating
equivalent machine language instructions).

A CFG is a structure (N,Σ, P, S) where N is a set of symbols known
as non-terminals, Σ is a set of symbols known as terminals, S ∈ N is
called the start symbol, and P is a finite set of production rules. Each
production rule is of the form

L → R1 R2 . . . Rn,

where L ∈ N is a non-terminal and each Ri belongs to N ∪ Σε. We
will now present several context-free grammars through examples, and
then proceed to examine their properties.

Consider the CFG G1 = ({S}, {0}, P, S) where P is the set of rules
shown below:

Grammar G1:
S -> 0.

A CFG is machinery to produce strings according to production rules.
We start with the start symbol, find a rule whose left-hand side matches
the start symbol, and derive the right-hand side. We then repeat the

Ganesh Gopalakrishnan
THESE PAGES COME FROM MY BOOK
COMPUTATION ENGINEERING - APPLIED AUTOMATA THEORY AND LOGIC
SPRINGER 2006
PROVIDED AS A COURTESY FOR YOU TO DO ASSIGNMENT 7 and STUDY ABOUT CFGs



218 13 Context-free Languages

process if the right-hand side contains a non-terminal. Using grammar
G1, we can produce only one string starting from S, namely 0, and so
the derivation stops. Now consider a grammar G2 obtained from G1 by
adding one extra production rule:

Grammar G2:
S -> 0
S -> 1 S.

Using G2, an infinite number of strings can be derived as follows:

1. Start with S, calling it a sentential form.
2. Take the current sentential form and for one of the non-terminals

N present in it, find a production rule of the form N → R1 . . . Rm,
and replace N with R1 . . . Rm. In our example, S -> 0 matches
S, resulting in sentential form 0. Since there are no non-terminals
left, this sentential form is called a sentence. Each such sentence is
a member of the language of the CFG - in symbols, 0 ∈ L(G2).
The step of going from one sentential form to the next is called a
derivation step. A sequence of such steps is a derivation sequence.

3. Another derivation sequence using G2 is

S ⇒ 1S ⇒ 11S ⇒ 110.

To sum up, given a CFG G with start symbol S, S is a sen-
tential form. If S1S2 . . . Si . . . Sm is a sentential form and there is a
rule in the production set of the form Si → R1 R2 . . . Rn, then
S1S2 . . . R1 R2 . . . Rn . . . Sm is a sentential form. We write

S ⇒ . . . ⇒ S1S2 . . . Si . . . Sm ⇒ S1S2 . . . R1 R2 . . . Rn . . . Sm ⇒ . . . .

As usual, we use ⇒∗ to denote a multi-step derivation.
Given a CFG G and one of the sentences in its language, w, a parse

tree for w with respect to G is a tree with frontier w, and each interior
node corresponding to one derivation step. The parse tree for string
110 with respect to CFG G2 appears in Figure 13.1(a).

13.1 The Language of a CFG

The language of a CFG G, L(G), is the set of all sentences that can be
derived starting from S. In symbols, for a CFG G,

L(G) = {w | S ⇒∗ w ∧ w ∈ Σ∗}.

According to this definition, for a CFG G3, with the only production



13.1 The Language of a CFG 219

S

1 S

1 S

0

(a)

S

S S

1 S S

1 0

(b)

S

S S

S S 0

1 1

(c)

Fig. 13.1. (a) The parse tree for string 110 with respect to CFG G2; (b) and
(c) are parse trees for 110 with respect to G4.

Grammar G3:
S → S.

we have L(G3) = ∅. The same is true of a CFG all of whose productions
contain a non-terminal on the RHS, since, then, we can never get rid
of all non-terminals from any sentential form.

A derivation sequence, in which the leftmost non-terminal is selected
for replacement in each derivation step, is known as a leftmost deriva-
tion. A rightmost derivation can be similarly defined. Specific deriva-
tion sequences such as the leftmost and rightmost derivation sequences
are important in compiler construction. We will employ leftmost and
rightmost derivation sequences for pinning down the exact derivation
sequence of interest in a specific discussion. This, in turn, decides the
shape of the parse tree. To make this clear, consider a CFG G4 with
three productions

Grammar G4:
S → SS | 1 | 0.

The above notation is a compact way of writing three distinct elemen-
tary productions S → SS, S → 1, and S → 0. A string 110 can now be
derived in two ways:

• Through the leftmost derivation S ⇒ SS ⇒ 1S ⇒ 1SS ⇒ 11S ⇒
110 (Figure 13.1(b)), or

• Through the rightmost derivation S ⇒ SS ⇒ S0 ⇒ SS0 ⇒ S10 ⇒
110 (Figure 13.1(c)).

Notice the connection between these derivation sequences and the parse
trees.

Now consider grammar G5 with production rules



220 13 Context-free Languages

Grammar G5:
S → aSbS | bSaS | ε.

The terminals are {a, b}. What CFL does this CFG describe? It is easy
to see that in each replacement step, an S is replaced with either ε or
a string containing an a and a b; and hence, all strings that can be
generated from G5 have the same number of a’s and b’s. Can all strings
that contain equal a’s and b’s be generated using G5? We visit this
(much deeper) question in the next section. If you try to experimentally
check this conjecture out, you will find that no matter what string of
a’s and b’s you try, you can find a derivation for it using G5 so long as
the string has an equal number of a’s and b’s.

Note: We employ ε, e, and epsilon interchangeably, often for
the ease of type-setting. !

13.2 Consistency, Completeness, and Redundancy

Consider the following CFG G6 which has one extra production rule
compared to G5:

Grammar G6:
S → aSbS | bSaS | SS | ε.

As with grammar G5, all strings generated by G6 also have an equal
number of a’s and b’s. If we identify this property as consistency, then
we find that grammars G5 and G6 satisfy consistency. What about
completeness? In other words, will all such strings be derived? Does it
appear that the production S → SS is essential to achieve complete-
ness? It turns out that it is not - we can prove that G5 is complete,
thus showing that the production S → SS of G6 is redundant.

How do we, in general, prove grammars to be complete? The general
problem is undecidable,1 as we shall show in Chapter 17. However,
for particular grammars and particular completeness criteria, we can
establish completeness, as we demonstrate below.

Proof of completeness:

The proof of completeness typically proceeds by induction. We have to
decide between arithmetic or complete induction; in this case, it turns
out that complete induction works better. Using complete induction,
we write the inductive hypothesis as follows:
1 The undecidability theorem that we shall later show is that for an arbitrary

grammar G, it is not possible to establish whether L(G) is equal to Σ∗.



13.2 Consistency, Completeness, and Redundancy 221

a

  
a

a
a

 b  
 b 

a
 b

 
 b

 b
0 1 2 3 4 3 2 3 2 1 0

S

epsilon

a
b

S

S

Fig. 13.2. A string that does not cause zero-crossings. The numbers below
the string indicate the running difference between the number of a’s and the
number of b’s at any point along the string

a
a

a
 b

  b
a

   b
 b

 b
 b

  b
 b

a
a

 b
a

 b
a

a
a

0 1 2 3 2 1 2 1 0 −2 −3 −4 −3 −2 −3 −2 −3 −2  0

S S

b
a

S

Fig. 13.3. A string that causes zero-crossings

Suppose G5 generates all strings less than n in length having an
equal number of a’s and b’s.

Consider now a string of length n + 2 – the next longer string that has
an equal number of a’s and b’s. We can now draw a graph showing the
running difference between the number of a’s and the number of b’s,
as in Figure 13.2 and Figure 13.3. This plot of the running difference
between #a and #b is either fully above the x-axis, fully below, or has
zero-crossings. In other words, it can have many “hills” and “valleys.”
Let us perform a case analysis:

1. The graph has no zero-crossings. There are further cases:
a) it begins with an a and ends with a b, as in Figure 13.2.



222 13 Context-free Languages

b) it begins with a b and ends with an a (this case is symmetric
and hence will not be explicitly argued).

2. It has zero-crossings, as in Figure 13.3. Again, we consider only
one case, namely the one where the first zero-crossing from the left
occurs after the curve has grown in the positive direction (i.e., after
more a’s occur initially than b’s).

Let us consider case 1a. By induction hypothesis, the shorter string
in the middle can be generated via S. Now, the entire string can be
generated as shown in Figure 13.2 using production S -> aSbS, with
a matching the first a, the first S matching ‘the shorter string in the
middle,’ the b matching the last b in the string, and the second S going
to ε. Case 1b may be similarly argued. If there is a zero-crossing, then
we attack the induction as illustrated in Figure 13.3, where we split
the string into the portion before its last zero-crossing and the portion
after its last zero-crossing. These two portions can, by induction, be
generated from G5, with the first portion generated as aSb and the
second portion generated as an S, as in Figure 13.3. !.

Illustration 13.2.1 Consider

Lambnck = {ambnck | m,n, k ≥ 0 and ((m = n) or (n = k))}

Develop a context-free grammar for this language. Prove the grammar
for consistency and completeness.
Solution: The grammar is given below. We achieve “equal number of
a’s and b’s” by growing “inside out,” as captured by the rule M -> a M
b. We achieve zero or more c’s by the rule C -> c C or e. Most CFGs
get designed through the use of such “idioms.”

S -> M C | A N

M -> a M b | e

N -> b N c | e

C -> c C | e

A -> a A | e

Consistency: No string generated by S must violate the rules of being
in language Lambnck . Therefore, if M generates matched a’s and b’s, and
C generates only c’s, consistency is guaranteed. The other case of A and
N is very similar.

Notice that from the production of M, we can see that it generates
matched a’s and b’s in the e case. Assume by induction hypothesis



13.2 Consistency, Completeness, and Redundancy 223

that in the M occurring on the right-hand side of the rule, M -> a M b,
respects consistency. Then the M of the left-hand side of this rule has
an extra a in front and an extra b in the back. Hence, it too respects
consistency.
Completeness: We need to show that any string of the form anbnck or
akbncn can be generated by this grammar. We will consider all strings
of the kind anbnck and develop a proof for them. The proof for the case
of akbncn is quite similar and hence is not presented.

We resort to arithmetic induction for this problem. Assume, by in-
duction hypothesis that the particular 2n + k-long string anbnck was
derived as follows:

• S ⇒ M C.
• M ⇒∗ anbn through a derivation sequence that we call S1, and
• C ⇒∗ ck through derivation sequence S2.
• S ⇒ M C ⇒∗ anbn C ⇒∗ anbn ck. Notice that in this derivation
sequence, the first ⇒∗ derivation sequence is what we call S1 and
the second ⇒∗ derivation sequence is what we call S2.

Now, consider the next legal longer string. It can be either an+1bn+1ck

or anbnck+1. Consider the goal of deriving an+1bn+1ck. This can be
achieved as follows:

• S ⇒ M C ⇒ a M b C.
• Now, invoking the S1 sequence, we get ⇒∗ a anbn b C.
• Now, invoking the S2 sequence, we get ⇒∗ a anbn b ck; and hence,
we can derive an+1bn+1ck.

Now, anbnck+1 can be derived as follows:

• S ⇒ M C ⇒ M c C.
• Now, invoking the S1 derivation sequence, we get ⇒∗ anbn c C.
• Finally, invoking the S2 derivation sequence, we get ⇒∗ anbn ck+1.

Hence, we can derive any string that is longer than anbnck, and so by
induction we can derive all legal strings.

13.2.1 More consistency proofs

In case of grammars G5 and G6, writing a consistency proof was rather
easy: we simply observed that all productions introduce equal a’s and
b’s in each derivation step. Sometimes, such “obvious” proofs are not
possible. Consider the following grammar G9:

S -> ( W S | e
W -> ( W W | ).



224 13 Context-free Languages

It turns out that grammar G9 generates the language of the set of all
well-parenthesized strings, even though three of the four productions
appear to introduce unbalanced parentheses. Let us first formally define
what it means to be well-parenthesized (see also Exercise 12.10), and
then show that G9 satisfies this criterion.

Well-parenthesized strings

A string x is well-parenthesized if:

1. The number of ( and ) in x is the same.
2. In any prefix of x, the number of ( is greater than or equal to the

number of ).

With this definition in place, we now show that G9 generates only
consistent strings. We provide a proof outline:

1. Conjecture about S: same number of ( and ). Let us establish this
via induction.
a) Epsilon (e) satisfies this.
b) How about ( W S ?
c) OK, we need to “conquer” W.

i. Conjecture about W: it generates strings that have one more
) than (.

ii. This is true for both arms of W.
iii. Hence, the conjecture about W is true.

d) Hence, the conjecture about S is true.
e) Need to verify one more step: In any prefix, is the number of (

more than the number of )?
f) Need conjecture about W: In any prefix of a string generated

by W, number of ) at most one more than the number of (.
Induct on the W production and prove it. Then S indeed satisfies
consistency. !.

13.2.2 Fixed-points again!

The language generated by a CFG was explained through the notion
of a derivation sequence. Can this language also be obtained through
fixed-points? The answer is ‘yes’ as we now show.

Consider recasting the grammar G5 as a language equation (call the
language L(S5)):

L(S5) = {a} L(S5) {b} L(S5) ∪ {b} L(S5) {a} L(S5) ∪ {ε}.



13.3 Ambiguous Grammars 225

Here, juxtaposition denotes language concatenation. What solutions
to this language equation exist? In other words, find languages to plug
in place of L(S5) such that the right-hand side language becomes equal
to the left-hand side language. We can solve such language equations
using the fixed-point theory introduced in Chapter 7. In particular, one
can obtain the least fixed-point by iterating from “bottom” which, in
our context, is the empty language ∅. The least fixed-point is also the
language computed by taking the derivation sequence perspective.

To illustrate this connection between fixed-points and derivation
sequences more vividly, consider a language equation obtained from
CFG G6:

L(S6) = {a}L(S6){b}L(S6) ∪ {b}L(S6){a}L(S6) ∪ {b}L(S6)L(S6) ∪ {ε}

It is easy to verify that this equation admits two solutions, one of which
is the desired language of equal a’s and b’s, and the other language
is a completely uninteresting one (see Exercise 13.5). The language
equation for L(S5) does not have multiple solutions. It is interesting to
note that the reason why L(S6) admits multiple solutions is because of
the redundant rule in it. To sum up:

• Language equations can have multiple fixed-points.
• The least fixed-point of a language equation obtained from a

CFG also corresponds to the language generated by the derivation
method.

These observations help sharpen our intuitions about least fixed-points.
The notion of least fixed-points is central to programming because pro-
grams also execute through “derivation steps” similar to those em-
ployed by CFGs. Least fixed-points start with “nothing” and help at-
tain the least (most irredundant) solution. As discussed in [20] and
also in Chapter 22, in Computational Tree Logic (CTL), both the least
fixed-point and the greatest fixed-point play significant and meaningful
roles.

13.3 Ambiguous Grammars

As we saw in Figures 13.1(b) and 13.1(c), even for one string such as
1110, it is possible to have two distinct parse trees. In a compiler, the
existence of two distinct parse trees can lead to the compiler producing
two different codes - or can ascribe two different meanings - to the same
sentence. This is highly undesirable in most settings. For example, if we



226 13 Context-free Languages

E

E + T

T T * F

F F 6

4 5

Fig. 13.4. Parse tree for 4 + 5 ∗ 6 with respect to G8.

have an arithmetic expression 4 +5 ∗ 6, we want it parsed as 4 + (5 ∗ 6)
and not as (4 + 5) ∗ 6. If we write the expression grammar as G7,

Grammar G7:
E → E + E | E ∗ E | number,

then both these parses (and their corresponding parse trees) would be
possible, in effect providing an ambiguous interpretation to expressions
such as 4 + 5 ∗ 6. It is necessary to disambiguate the grammar, for
example by rewriting the simple expression grammar above to grammar
G8. One such disambiguated grammar is the following:

Grammar G8:
E → E + T | T
T → T ∗ F | F
F → number | (E).

In the rewritten grammar, for any expression containing + and ∗, the
parse trees will situate ∗ deeper in the tree (closer to the frontier) than
+, thus, in effect, forcing the evaluation of ∗ first, as illustrated in
Figure 13.4.

13.3.1 If-then-else ambiguity

An important practical example of ambiguity arises in the context of
grammars pertaining to if statements, as illustrated below:

STMT -> if EXPR then STMT
| if EXPR then STMT else STMT
| OTHER

OTHER -> p



13.3 Ambiguous Grammars 227

EXPR -> q

The reason for ambiguity is that the else clause can match either of the
then clauses. Compiler writers avoid the above if-then-else ambiguity
by modifying the above grammar in such a way that the else matches
with the closest unmatched then. One example of such a rewritten
grammar is the following:

STMT -> MATCHED | UNMATCHED

MATCHED -> if EXPR then MATCHED else MATCHED | OTHER

UNMATCHED -> if EXPR then STMT
| if EXPR then MATCHED else UNMATCHED

OTHER -> p

EXPR -> q

This forces the else to go with the closest previous unmatched then.

13.3.2 Ambiguity, inherent ambiguity

In general, it is impossible to algorithmically decide whether a given
CFG is ambiguous (see Chapter 17 and Exercise 17.2 that comes with
hints). In practice, this means that there cannot exist an algorithm
that can determine whether a given CFG is ambiguous. To make things
worse, there are inherently ambiguous languages – languages for which
every CFG is ambiguous. If the language that one is dealing with is
inherently ambiguous, it is not possible to eliminate ambiguity in all
cases, such as we did by rewriting grammar G7 to grammar G8.

Notice that the terminology is not inherently ambiguous gram-
mar but inherently ambiguous language - what we are saying is
every grammar is ambiguous for certain CFLs.

An example of an inherently ambiguous language is

{0i1j2k | i, j, k ≥ 0 ∧ i = j ∨ j = k}.

The intuition is that every grammar for this language must have pro-
ductions geared towards matching 0s against 1s and 1s against 2s. In
this case, given a string of the form 0k1k2k, either of these options can
be exercised. A formal proof may be found in advanced papers in this
area, such as [82].



228 13 Context-free Languages

13.4 A Taxonomy of Formal Languages and Machines

Machines Languages Nature of grammar

DFA/NFA Regular
Left-linear or Right-linear
productions

DPDA
Deterministic
CFL

Each LHS has one non-terminal
The productions are deterministic

NPDA
(or “PDA”) CFL

Each LHS has only
one non-terminal

LBA
Context Sensitive
Languages

LHS may have length > 1, but
| LHS| ≤ |RHS|, ignoring ε productions

DTM/NDTM
Recursively
Enumerable

General grammars
(|LHS| ≥ |RHS| allowed)

Fig. 13.5. The Chomsky hierarchy and allied notions

We now summarize the formal machines, as well as languages, stud-
ied in this book in the table given in Figure 13.5. This is known as the
Chomsky hierarchy of formal languages. For each machine, we describe
the nature of its languages, and indicate the nature of the grammar
used to describe the languages. It is interesting that simply by vary-
ing the nature of production rules, we can obtain all members of the
Chomsky hierarchy. This single table, in a sense, summarizes some of
the main achievements of over 50 years of research in computability,
machines, automata, and grammars. Here is a summary of the salient
points made in this table, listed against each of the language classes:2

Regular languages:

DFAs and NFAs serve as machines that recognize regular languages.
Context-free grammars written with only left-linear or only right-linear
productions can generate or recognize regular languages. The linearity

2 We prefer to highlight the language classes as they constitute the more abstract
concept, while machines and grammars are two different syntactic devices that
denote languages.



13.4 A Taxonomy of Formal Languages and Machines 229

of the production rules means that there is only one non-terminal al-
lowed on the RHS of each production, which appears leftmost or right-
most. Hence, these non-terminals can be regarded as states of an NFA,
as discussed in Section 13.6.

Deterministic context-free languages (DCFL):

Push-down automata are machines that recognize DCFLs, as illus-
trated in Illustration 13.4.2. In effect, they can parse sentences in the
language without backtracking (deterministically). As for grammars,
the fact that each context-free production specifies the expansion of
one and only one non-terminal on the left-hand side means that this
expansion is good wherever the non-terminal appears—i.e., regardless
of the context (hence “context-free”). The grammars are deterministic,
as illustrated in Illustration 13.4.2.

Context-free languages (CFL):

These are more general than DCFLs, as the constraint of determinism
is removed in the underlying machines and grammars.

Context-sensitive languages (CSL):

CSLs can be recognized by linear bounded automata which are described
in Section 15.2.3. Basically, they are restricted Turing machines which
can write only on that portion of the input tape on which the input
was originally laid out. In particular, given any LBA M and a string
w, it can be conclusively answered as to whether M accepts w or not.
This is impossible with a Turing machine.

As for grammars, CSLs are recognized by productions in which the
length of a left-hand side is allowed to be more than 1. Such a context-
sensitive production specifies a pattern on the LHS, and a sentential
form on the RHS. In a sense, we can have a rule of the form a A d
-> a a c d and another of the form a A e -> a c a d. Notice that
A’s expansion when surrounded by a and d can be different from when
surrounded by a and e, thus building in context sensitivity to the in-
terpretation of A. The length of the RHS is required to be no less than
that of the LHS (except in the ε case) to ensure decidability in some
cases.

Recursively enumerable or Turing recognizable (RE or TR) languages:

These form the most general language class in the Chomsky hierarchy.
Notice that Turing machines as well as unrestricted productions, form
the machines and grammars for this language class.



230 13 Context-free Languages

CFGs and CFLs are fundamental to computer science because they
help describe the structure underlying programming languages. The
basic “signature” of a CFL is “nested brackets:” for example, nesting
occurs in expressions and in very many statically scoped structures
in computer programs. In contrast, the basic signature of regular lan-
guages is “iteration (looping) according to some ultimate periodicity.”

Illustration 13.4.1 Let us argue that the programming language C
is not regular. Let there be a DFA for C with n states. Now consider
the C program

CNOP = {main(){n}n | n ≥ 0}.

Clearly, the DFA for C will loop in the part described by main(){n,
and by pumping this region wherever the loop might fall, we will obtain
a malformed C program. Some of the pumps could, for instance, result
in the C program maiaiain(){. . ., while some others result in strings
of the form main{{{}}, etc.
Using a CFG, we can describe CNOP using production rules, as follows:

L_C_nop -> main Paren Braces
Paren -> ()
Braces -> epsilon | { Braces }.

13.4.1 Non-closure of CFLs under complementation

It may come as a surprise that most programming languages are not
context-free! For instance, in C, we can declare function prototypes that
can introduce an arbitrary number of arguments. Later, when the func-
tion is defined, the same arguments must appear in the same order. The
structure in such “define/use” structures can be captured by the lan-
guage

Lww = {ww | w ∈ {0, 1}∗}.

As we shall sketch in Section 13.8 (Illustration 13.8.1), this language
is not context-free. It is a context-sensitive language which can be ac-
cepted by a linear bounded automaton (LBA). Basically, an LBA has a
tape, and can sweep across the tape as many times as it wants, writing
“marking bits” to compare across arbitrary reaches of the region of the
tape where the original input was presented. This mechanism can easily
spot a w and a later w appearing on the tape. The use of symbol tables
in compilers essentially gives it the power of LBAs, making compilers
able to handle C prototype definitions.



13.4 A Taxonomy of Formal Languages and Machines 231

While Lww is not context-free, its complement, Lww, is indeed a
CFL. This means that CFLs are not closed under complemen-
tation!

Lww is generated by the following grammar Gww :

Grammar Gww:
S -> AB | BA | A | B
A -> CAC | 0
B -> CBC | 1
C -> 0 | 1.

Illustration 13.4.2 For each language below, write

• R if the language is regular,
• DCFL if the language is deterministic context-free (can be recog-
nized by a DPDA),
• CFL if it can be recognized by a PDA but not a DPDA,
• IA if the language is CFL but is inherently ambiguous, and
• N if not a CFL.

Also provide a one-sentence justification for your answer. Note: In some
cases, the language is described using the set construction, while in
other cases, the language is described via a grammar (“L(G)”).

1. {x | x is a prefix of w for w ∈ {0, 1}∗}.
Solution: This is R, because the language is nothing but {0, 1}∗.

2. L(G) where G is the CFG S → 0 S 0 | 1 S 1 | ε.
Solution: CFL, because nondeterminism is required in order to
guess the midpoint.

3. {anbmcndm | m,n ≥ 0}.
Solution: The classification is N , because comparison using a single
stack is not possible. If we push an followed by bm, it is no longer
possible to compare cn against an, as the top of the stack contains
bm. Removing bm “temporarily” and restoring it later isn’t possible,
as it is impossible to store away bm in the finite-state control.

4. {anbn | n ≥ 0}.
Solution: DCFL, since we can deterministically switch to matching
b’s.

5. {aibjck | i, j, k ≥ 0 and i = j or j = k}.
Solution: IA, because for i = j = k, we can have two distinct parses,
one comparing a’s and b’s, and the other comparing b’s and c’s (the
capability for these two comparisons must exist in any grammar,
because of the “or” condition).



232 13 Context-free Languages

Illustration 13.4.3 Indicate which of the following statements per-
taining to closure properties is true and which is false. For every true
assertion below, provide a one-sentence supportive answer. For every
false assertion below, provide a counterexample.

1. The union of a CFL and a regular language is a CFL.
Solution: True, since regular languages are also CFLs. Write the top-
level production of the new CFL as S -> A | B where A generates
the given CFL and B generates the given regular language.

2. The intersection of any two CFLs is always a CFL.
Solution: False. Consider {ambmcn | m,n ≥ 0} ∩ {ambncn |
m,n ≥ 0}. This is {anbncn | n ≥ 0}, which is not a CFL.

3. The complement of a CFL is always a CFL.
Solution: False. Consider Lww = {ww | w ∈ {0, 1}∗} which was
discussed on page 230. Try to come up with another example your-
self.

Illustration 13.4.4 Describe the CFL generated by the following
grammar using a regular expression. Show how you handled each of
the non-terminals.
S → TT
T → UT | U
U → 0U | 1U | ε.

It is easy to see that U generates a language represented by regular
expression (0 + 1)∗, while T generates U+. Note that for any regular
expression R, it is the case that (R∗)+ is R∗ ∪ R∗R∗ ∪ R∗R∗R∗ . . .
which is R∗. Therefore, T generates (0 + 1)∗. Now, S generates TT , or
(0+1)∗(0+1)∗, which is the same as (0+1)∗. Therefore, L(S) = {0, 1}∗.

13.4.2 Simplifying CFGs

We illustrate a technique to simplify grammars through an example.

Illustration 13.4.5 Simplify the following grammar, explaining why
each production or non-terminal was eliminated:

S → A B | D
A → 0 A | 1 B | C
B → 2 | 3 | A
D → A C | B D



13.4 A Taxonomy of Formal Languages and Machines 233

E → 0.

Solution: Grammars are simplified as follows. First, we determine which
non-terminals are generating - have a derivation sequence to a terminal
string (if a non-terminal is non-generating, the language denoted by it
is ∅, and we can safely eliminate all such non-terminals, as well as, re-
cursively, all other non-terminals that use them). We can observe that
in our example, B is generating. Therefore, A is generating. C is an
undefined non-terminal, and so we can eliminate it. Now, we observe
that S is generating, since AB is generating; so we had better retain
S (!). D is reachable (‘reachable’ means that it appears in at least one
derivation sequence starting at S) but non-generating, so we can elimi-
nate D. Finally, E is not reachable from S through any derivation path,
and hence we can eliminate it, all productions using it (none in our ex-
ample), and all productions expanding E (exactly one in our example).
Therefore, we obtain the following simplified CFG:

S → A B
A → 0 A | 1 B
B → 2 | 3 | A.

Here, then, are sound steps one may employ to simplify a given
CFG (it is assumed that the productions are represented in terms of
elementary productions in which the disjunctions separated by | on the
RHS of a production rule are expressed in terms of separate productions
for the same LHS):

• A non-generating non-terminal is useless, and it can be eliminated.
• A non-terminal for which there is no rule defined (does not appear
on the left-hand side of any rule) is non-generating in a trivial sense.
• The property of being non-generating is ‘infectious’ in the following
sense: if non-terminal N1 is non-generating, and if N1 appears in
every derivation sequence of another non-terminal N2, then N2 is
also non-generating.
• A non-terminal that does not appear in any derivation sequence
starting from S is unreachable.
• Any CFG production rule that contains either a non-generating
or an unreachable non-terminal can be eliminated.



234 13 Context-free Languages

Illustration 13.4.6 Simplify the following grammar, clearly showing
how each simplification was achieved (name criteria such as ’generating’
and ’reaching’):

S -> A B | C D
A -> 0 A | 1 B
B -> 2 | 3
D -> A C | B D E
E -> 4 E | D | 5.

B is generating. Hence, A is generating. S is generating. B, A, and S are
reachable. Hence, S, A, and B are essential to preserve, and therefore C
and D are reachable; however, C is not generating. Hence, production
CD is useless. Hence, we are left with:

S -> A B
A -> 0 A | 1 B
B -> 2 | 3.

!

We now examine push-down automata which are machines that recog-
nize CFLs, and bring out some connections between PDAs and CFLs.

13.5 Push-down Automata

A push-down automaton (PDA) is a structure (Q,Σ,Γ, δ, q0, z0, F )
where Q is a finite set of states, Σ is the input alphabet, Γ is the
stack alphabet (that usually includes the input alphabet Σ), q0 is the
initial state, F ⊆ Q is the set of accepting states, z0 the initial stack
symbol, and

δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ ∗
.

In each move, a PDA can optionally read an input symbol. However,
in each move, it must read the top of the stack (later, we will see that
this assumption comes in handy when we have to convert a PDA to
a CFG). Since we will always talk about an NPDA by default, the δ
function returns a set of nondeterministic options. Each option is a
next-state to go to, and a stack string to push on the stack, with the
first symbol of the string appearing on top of the stack after the push
is over. For example, if 〈q1, ba〉 ∈ δ(q0, x, a), the move can occur when
x can be read from the input and the stack top is a. In this case, the
PDA moves over x (it cannot read x again). Also, an a is removed from
the stack. However, as a result of the move, an a is promptly pushed
back on the stack, and is followed by a push of b, with the machine
going to state q1. The transition function δ of a PDA may be either
deterministic or nondeterministic.



13.5 Push-down Automata 235

13.5.1 DPDA versus NPDA

A push-down automaton can be deterministic or nondeterministic.
DPDA and NPDA are not equivalent in power; the latter are strictly
more powerful than the former. Also, notice that unlike with a DFA,
a deterministic PDA can move on ε. Therefore, the exact specification
of what deterministic means becomes complicated. We summarize the
definition from [60]. A PDA is deterministic if and only if the following
conditions are met:

1. δ(q, a,X) has at most one member for any q in Q, a in Σε, and X
in Γ .

2. If δ(q, a,X) is non-empty, for some a in Σ, then δ(q, ε,X) must be
empty.

In this book, I will refrain from giving a technically precise defini-
tion of DPDAs. It really becomes far more involved than we wish to
emphasize in this chapter, at least. For instance, with a DPDA, it be-
comes necessary to know when the string ends, thus requiring a right
end-marker /. For details, please see [71, page 176].

13.5.2 Deterministic context-free languages (DCFL)

Current
State Input Stack

top
String
pushed

New
State Comments

q0 0 z0 0 z0 q1 0. Have to push on this one
q0 1 z0 1 z0 q1 ...or this one
q1 0 0 0 0 q1 1a.Assume not at midpoint
q1 0 1 0 1 q1 Have to push on this one
q1 0 0 ε q1 1b. Assume at midpoint
q1 1 1 1 1 q1 2a. Assume not at midpoint
q1 1 0 1 0 q1 Have to push on this one
q1 1 1 ε q1 2b. Assume at midpoint
q1 ε z0 z0 q2 3. Matched around midpoint

Fig. 13.6. A PDA for the language L0 = {wwR | w ∈ {0, 1}∗}

A deterministic context-free language (DCFL) is one for which there
is a DPDA that accepts the same language. Consider the language

Language L0 = {wwR | w ∈ {0, 1}∗}.



236 13 Context-free Languages

L0 is not a DCFL because in any PDA, the use of nondeterminism is
essential to “guess” the midpoint. Figure 13.6 presents the δ function
of a PDA designed to recognize L0. This PDA is described by the
structure

PL0
= ({q0, }, {0, 1}, {0, 1, z0}, δ, q0, z0, {q0, q2}).

This PDA begins by stacking 0 or 1, depending on what comes first.
The comments 1a and 1b describe the nondeterministic selection of
assuming not being at a midpoint, and being a midpoint, respectively.
A similar logic is followed in 2a and 2b as well. Chapter 14 describes
PDA construction in greater detail.
Let us further our intuitions about PDAs by considering a few lan-
guages:

L1: {aibjck | if i = 1 then j = k}.

L2: {aibjckdm | i, j, k,m ≥ 0 ∧ if i = 1 then j = k else k = m}

L3: {ww | w ∈ {0, 1}∗}.

L4: {0, 1}∗ \ {ww | w ∈ {0, 1}∗}.

L5: {aibjck | i = j or i = k}.

L6: {anbncn | n ≥ 0}.

L1 is a DCFL, because after seeing whether i = 1 or not, a deter-
ministic algorithm can be employed to process the rest of the input. A
DPDA can be designed for reverse(L1) also. Likewise, a DPDA can be
designed for L2. However, as discussed in Section 8.1.4, reverse(L2) is
not a DCFL, as it is impossible to keep both decisions – whether j = k
or k = m – ready by the time i is encountered. L3 is not a CFL at all.
However, L4, the complement of L3, is a CFL. L5 is a CFL (but not a
DCFL) – the guesses of i = j or i = k can be made nondeterministi-
cally. Finally, L6 is not a CFL, as we cannot keep track of the length
of three distinct strings using one stack. !

13.5.3 Some Factoids

Here are a few more factoids that tie together ambiguity (of grammars)
and determinism (of PDA):



13.6 Right- and Left-Linear CFGs 237

• If one can obtain a DPDA for a language, then that language is not
inherently ambiguous. This is because for an inherently ambiguous
language, every CFG admits two parses, thus meaning that there
cannot be a DPDA for it.

• There are CFLs that are not DCFLs (have no DPDA), and yet they
have non-ambiguous grammars. The grammar

S -> 0 S 0 | 1 S 1 | e

is non-ambiguous, and yet denotes a language that is not a DCFL.
In other words, this CFG generates all the strings of the form ww,R

and these strings have only one parse tree. However, since the mid-
point of such strings isn’t obvious during a left-to-right scan, a
nondeterministic PDA is necessary to parse such strings.

13.6 Right- and Left-Linear CFGs

A right-linear CFG is one where every production rule has exactly
one non-terminal and that it also appears rightmost. For example, the
following grammar is right-linear:

S -> 0 A | 1 B | e
A -> 1 C | 0
B -> 0 C | 1
C -> 1 | 0 C.

Recall that S -> 0 A | 1 B | e is actually three different production
rules S -> 0 A, S -> 1 B, and S -> e, where each rule is right-linear.
This grammar can easily be represented by the following NFA obtained
almost directly from the grammar:

IS - 0 -> A
IS - 1 -> B
IS - e -> F1
A - 1 -> C
A - 0 -> F2
B - 0 -> C
B - 1 -> F3
C - 0 -> C
C - 1 -> F4.

A left-linear grammar is defined similar to a right-linear one. An ex-
ample is as follows:

S -> A 0 | B 1 | e
A -> C 1 | 0
B -> C 1 | 1
C -> 1 | C 0.



238 13 Context-free Languages

A purely left-linear or a purely right-linear CFG denotes a regular
language. However, the converse is not true; that is, if a language is
regular, it does not mean that it has to be generated by a purely left-
linear or purely right-linear CFG. Even non-linear CFGs are perfectly
capable of sometimes generating regular sets, as in

S -> T T | e
T -> 0 T | 0.

It also must be borne in mind that we cannot “mix up” left- and right-
linear productions and expect to obtain a regular language. Consider
the productions

S -> 0 T | e
T -> S 1.

In this grammar, the productions are linear - left or right. However,
since we use left- and right-linear rules, the net effect is as if we defined
the grammar

S -> 0 S 1 | e

which generates the non-regular context-free language

{0n1n | n ≥ 0}.

Conversion of purely left-linear grammars to NFA

Converting a left-linear grammar to an NFA is less straightforward.
We first reverse the language it represents by reversing the grammar.
Grammar reversal is approached as follows: given a production rule

S → R1R2 . . . Rn,

we obtain a production rule for the reverse of the language represented
by S by reversing the production rule to:

Sr → Rr
nRr

n−1 . . . Rr
1.

Applying this to the grammar at hand, we obtain

Sr -> 0 Ar | 1 Br | e
Ar -> 1 Cr | 0
Br -> 1 Cr | 1
Cr -> 1 | 0 Cr.

Once an NFA for this right-linear grammar is built, it can be reversed
to obtain the desired NFA.



13.8 A Pumping Lemma for CFLs 239

13.7 Developing CFGs

Developing CFGs is much like programming; there are no hard-and-
fast rules. Here are reasonably general rules of the thumb for arriving
at CFGs:

1. (Use common idioms): Study and remember many common pat-
terns of CFGs and use what seems to fit in a given context. Ex-
ample: To get the effect of matched brackets, the common idiom
is

S -> ( S ) | e.

2. Break the problem into simpler problems:
Example: {ambn | m 0= n, m, n ≥ 0}.

a) So, a’s and b’s must still come in order.
b) Their numbers shouldn’t match up.

i. Formulate matched up a’s and b’s
M -> e | a M b

ii. Break the match by adding either more A’s or more B’s
S -> A M | M B
A -> a | a A
B -> b | b B

13.8 A Pumping Lemma for CFLs

Consider any CFG G = (N,Σ, P, S). A Pumping Lemma for the lan-
guage of this grammar, L(G), can be derived by noting that a “very
long string” w ∈ L(G) requires a very long derivation sequence to derive
it from S. Since we only have a finite number of non-terminals, some
non-terminal must repeat in this derivation sequence, and furthermore,
the second occurrence of the non-terminal must be a result of expand-
ing the first occurrence (it must lie within the parse tree generated by
the first occurrence).

For example, consider the CFG

S -> ( S ) | T | e

T -> [ T ] | T T | e.

Here is an example derivation:



240 13 Context-free Languages

S => ( S ) => (( T )) => (( [ T ] )) => (( [ ] ))
^ ^

Occurrence-1 Occurrence-2

Occurrence-1 involves Derivation-1: T => [ T ] => [ ]
Occurrence-2 involves Derivation-2: T => e

Here, the second T arises because we took T and expanded it into
[ T ] and then to [ ]. Now, the basic idea is that we can use
Derivation-1 used in the first occurrence in place of Derivation-2, to
obtain a longer string:

S => (S) => ((T)) => (( [ T ] )) => (( [[ T ]] )) => (( [[ ]] ))
^ ^
Occurrence-1 Use Derivation-1 here

In the same fashion, we can use Derivation-2 in place of Derivation-1
to obtain a shorter string, as well:

S => ( S ) => ( ( T ) ) => ( ( ) )
^
Use Derivation-2 here

When all this happens, we can find a repeating non-terminal that
can be pumped up or down. In our present example, it is clear that
we can manifest (([i ]i)) for i ≥ 0 by either applying Derivation-2
directly, or by applying some number of Derivation-1s followed by
Derivation-2. In order to conveniently capture the conditions men-
tioned so far, it is good to resort to parse trees. Consider a CFG with
|V | non-terminals, and with the right-hand side of each rule containing
at most b syntactic elements (terminals or non-terminals). Consider a
b-ary tree built up to height |V |+1, as shown in Figure 13.7. The string
yielded on the frontier of the tree w = uvxyz. If there are two such parse
trees for w, pick the one that has the fewest number of nodes. Now,
if we avoid having the same non-terminal used in any path from the
root to a leaf, basically each path will “enjoy” a growth up to height at
most |V | (recall that the leaves are terminals). The string w = uvxyz
is, in this case, of length at most b|V |. This implies that if we force
the string to be of length b|V |+1 (called p hereafter), a parse tree for
this string will have some path that repeats a non-terminal. Call the
higher occurrence V1 and the lower occurrence (contained within V1)
V2. Pick the lowest two such repeating pair of non-terminals. Now, we
have these facts:

|vxy| ≤ p; if not, we would find two other non-terminals that exist
lower in the parse tree than V1 and V2, thus violating the fact that
V1 and V2 are the lowest two such.



13.8 A Pumping Lemma for CFLs 241

V_1

S

V_2

Height |V| + 1
max. branching factor = b

V_2

u v x y z

S

u z

x

y zx

S

V_1

V_1

V_2
u v

v x y

Fig. 13.7. Depiction of a parse tree for the CFL Pumping Lemma. The
upper drawing shows a very long path that repeats a non-terminal, with the
lowest two repetitions occurring at V 2 and V 1 (similar to Occurrence-1 and
Occurrence-2 as in the text). With respect to this drawing: (i) the middle
drawing indicates what happens if the derivation for V 2 is applied in lieu of
that of V 1, and (ii) the bottom drawing depicts what happens if the derivation
for V 2 is replaced by that for V 1, which, in turn, contains a derivation for
V 2

|vx| ≥ 1; if not, we will in fact have w = uxz, for which a shorter
parse tree exists (namely, the one where we directly employ V2).
Now, by pumping, we can obtain the desired repetitions of v and y,
as described in Theorem 13.1.

Theorem 13.1. Given any CFG G = (N,Σ, P, S), there exists a num-
ber p such that given a string w in L(G) such that |w| ≥ p, we can split
w into w = uvxyz such that |vy| > 0, |vxy| ≤ p, and for every i ≥ 0,
uvixyiz ∈ L(G).



242 13 Context-free Languages

We can apply this Pumping Lemma for CFGs in the same manner as
we did for regular sets. For example, let us sketch that Lww of page 230
is not context-free.

Illustration 13.8.1 Suppose Lww were a CFL. Then the CFL Pump-
ing Lemma would apply. Let p be the pumping length associated with
a CFG of this language. Consider the string 0p1p0p1p which is in Lww.
The segments v and y of the Pumping Lemma are contained within
the first 0p1p block, in the middle 1p0p block or in the last 0p1p block,
and in each of these cases, it could also have fallen entirely within a
0p block or a 1p block. By pumping up or down, we will then obtain a
string that is not within Lww. !

Exercise 13.13 demonstrates another “unusual” application of the CFG
Pumping Lemma.

Chapter Summary

This chapter discussed the notion of context-free grammars and context-
free languages. We emphasized ‘getting a grammar right’ by showing
that it has two facets—namely consistency and completeness. Fixed-
point theory helps appreciate context-free grammars in terms of re-
cursive equations whose least fixed-point is the “desired” context-free
language. We discussed ambiguity and disambiguation—two topics that
compiler writers deeply care about. After discussing the Chomsky hier-
archy, we discuss the topics of closure properties (or lack thereof under
intersection and complementation). We present how CFGs may be sim-
plified. We then move on to push-down automata, which are machines
with a finite control and one stack. We discuss the fact that NPDAs
and DPDAs are not equivalent. We close off with a discussion of an in-
complete Pumping Lemma for CFLs. Curiously, there is also a complete
Pumping Lemma for CFLs (“strong Pumping Lemma” [124]). We do
not discuss this lemma (it occupies nearly one page even when stated
in a formal mathematical notation).

Exercises

13.1. Draw the parse tree for string

a a a b b a b b b b b b a a b a b a a a

with respect to grammar G5, thus showing that this string can be
derived according to the grammar.



13.8 A Pumping Lemma for CFLs 243

13.2.
1. Parenthesize the following expression according to the rules of stan-

dard precedence for arithmetic operators, given that ∼ stands for
unary minus:

∼ 1 ∗ 2 − 3 − 4/ ∼ 5.

2. Convert the above expression to Reverse Polish Notation (post-fix
form).

13.3. Prove by induction that the following grammar generates only
strings with an odd number of 1s. Clearly argue the basis case(s), the
inductive case(s), and what you prove regarding T and regarding S.

S → S T 0 | 0 1
T → 1 1 T | ε

13.4. Write the consistency proof pertaining to G9 in full detail. Then
write a proof for the completeness of the above grammar (that it gen-
erates all well-parenthesized strings).

13.5. Which other solution to the language equation of L(S6) of
page 225 exists?

13.6. Prove that Gww of Page 231 is a CFG for the language Lww. Hint:
The productions S -> A and S -> B generate odd-length strings. Also,
S -> AB and S -> BA generate all strings that are not of the form ww.
This is achieved by generating an even-length string pq where |p| = |q|
and if p is put “on top of” q, there will be at least one spot where they
both differ.

13.7. Argue that a DPDA satisfying the definition in Section 13.5.1
cannot be designed for the language {wwR | w ∈ Σ∗}.

13.8. (Adapted from Sipser [111]) Determine whether the context-free
language described by the following grammar is regular, showing all
the reasoning steps:

S -> T T | U
T -> 0 T | T 0 | #
U -> 0 U 0 0 | #.

13.9. Answer whether true or false:

1. There are more regular languages (RLs) than CFLs.
2. Every RL is also a CFL.



244 13 Context-free Languages

3. Every CFL is also a RL.
4. Every CFL has a regular sublanguage (“sublanguage” means the

same as “subset”).
5. Every RL has a CF sublanguage.

13.10.
1. Obtain one CFG G1 that employs left-linear and right-linear pro-

ductions (that cannot be eliminated from G1) such that L(G1) is
regular.

2. Now obtain another grammar G2 where L(G2) is non-regular but
is a DCFL.

3. Finally, obtain a G3 where L(G3) is not a DCFL.

13.11. Using the Pumping Lemma, show that the language
{0n1n2n | n ≥ 0} is not context-free.

13.12. Show using the Pumping lemma that the language
{ww | w ∈ {0, 1}∗} is not context-free.

13.13. Prove that any CFG with |Σ| = 1 generates a regular set. Hint:
use the Pumping Lemma for CFLs together with the ultimate period-
icity result for regular sets. Carefully argue and conclude using the PL
for CFLs that we are able to generate only periodic sets.

13.14. Argue that the syntax of regular expressions is context-free while
the syntax of context-free grammars is regular!



Index

<lex, 109
=lex, 109
>lex, 109
ATM , 298
CP , the set of all legal C programs,

44
ETM , 304
Eclosure function, 157
HaltTM , 299
Ibs, infinite bit-sequences, 44
R∗, given R, 60
R+, given R, 60
R0, given R, 60
RegularTM , 305
S/ ≡, 60
TID DFA, 124
⇐, 76
⇔, 76
⇒, 75
Σ, 105
Σε = Σ ∪ {ε}, 141
δ, for a DFA, 121
δ, for an NFA, 141
∅, 107
δ̂, 124, 147
≤lex, 109
|, Unix pipe, 153
+=-CNF, 340
Clique, 349
⊥, 98
-, 64

→, 146
.
=, 76
"
=, 76
ε, 106
ε-closure, 145
/, 124
/∗, 124
as notation, 77, 113
q →, 146
q0, 121
’, quoting, 153
ε→, 146
ε
→∗, 146
‘∗,’ Kleene star, 112
‘∗,’ Star, 112
‘-’, Read standard input, 153
graphviz, 129
2-CNF, 341
2-CNF satisfiability, 341
2-partition, 364
3-CNF, 340
3-SAT, 354

NPC, 354
3-partition, 364
3x+1 problem, 28

Acceptance of strings, 124
Acceptance problem, 299
Accepting state, 119
Agrawal, Kayal, Saxena, 363



462 Index

Aleph, 37
Algorithm, 3, 27
Algorithmically computable, 27
Algorithmically decidable, 126
Alphabet, 105
Ambiguity, 253

if-then-else , 226
of CFGs , 225
undecidability, 227

Ambiguity , 225
Ambiguity and nondeterminism, 253
Ambiguous grammar, 225
Approximant, 194

for fixed-points, 194
Ariane, 8
AU, 425

GFP, 427
LFP, 426
recursion, 425

Automata theory, 6
Automaton/logic connection, 186
Avoid wasted work, 11
Axiomatization, 324

Büchi Automata, 389
Büchi automata, 428

emptiness, 433
expressiveness, 428

Bag, 16
Barter, 38
Basketball, 56
BDD, 186, 199

as minimized DFA, 187
backward reachability, 192
BED tool, 190
Boolean functions, 191
forward reachability, 192
reachability analysis, 192
redundant decoding, 189
variable ordering, 190

BDD vs ROBDD, 187
BED

reachability example, 197
BED tool, 190
Binary decision diagrams, 187

Black hole state, 123
Boolean functions, 191
Boolean satisfiability, 331
Bottom, 98

function, 100
value, 98

Bryant, 186

Cantor, 39
Cardinal numbers, 49
Cardinality, 37
ℵ0, 37
ℵ1, 37
ℵ0.5??, 43
trap, 39

Cartesian product, 21
examples of, 21

Certificate, 348
Diophantine, 361

CFG, 217
fixed-points , 224
left-linear , 237
right-linear , 237
simplification, 232

CFG to NFA, 238
CFG to PDA, 254
CFL

deterministic, 235
pumping lemma, 239

CFLs and decidability, 264
Characteristic sequence, 22

infinite, 108
Chomsky hierarchy , 228
Chomsky normal form, 262
Church-turing thesis, 272
CKY algorithm, 262
Clay institute, 345
Clique, 349
Closure, 60, 124

prefix, 115
reflexive, 60
reflexive and transitive, 60, 124
transitive, 60

Closure of CFLs, 264
Closure properties of CFLs , 230



Index 463

CNF, 332
CNF conversion, 336
Cocke-Kasami-Younger Algorithm,

262
Code, 292

angle bracket, 292
Coiled, 179
Collatz’s problem, 28
Complete, 323
Completeness, 220

of a CFG, 220
undecidable , 220

Complexity theory, 5
Composite, 350, 363

selling, 350
Computation, 105
Computation engineering, 1
Computation history, 312
Computation tree, 401
Computational procedure, 3
Computational process, 27
Computational tree logic, 403
Computer engineering, 1
Congruence

radio receiver, 65
Congruence relation, 64
Conjunctive normal form, 332
coNP, 362
coNPC, 362
Consistency

of a CFG, 220
Consistency , 220
Constructor, 80
Context-free, 229
Context-free grammar, 217

fixed-points, 224
Continuum Hypothesis, 43
Contradiction

proof by, 207
Contrapositive, 207
Contrapositive rule, 77
Conversion

NFA to DFA, 159
Cryptography, 74

RSA, 74

CTL, 403
enumerative model checking, 419
expressiveness, 428
fixed-point iteration, 421
fixed-point semantics, 410
illustration using BED, 424
LFP and GFP, 425
semantics, 408
symbolic model checking, 421
syntax, 407

Curried form, 30

DBA, 430
DCFL, 235
De-fred, 24, 93, 94, 96
Deadlock, 392
Decidable, 126
Decider, 351
Decision problem, 273
Definitional equality, 76
Demorgan’s law, 80

generalized, 80
Derivation, 219

leftmost , 219
parse tree shape, 219
rightmost , 219

Derivation sequence , 218
Derivation step , 218
Determinism vs ambiguity , 236
Deterministic BA, 430
Deterministic CFLs, 235
Deterministic finite automaton, 4
DFA, 4

complementation, 165
Hamming distance, 176
intersection, 165
intersection with PDAs, 293
Kleene star, 166
minimization, 174
Myhill-Nerode Theorem, 174
relationship with BDDs, 174
string classifier, 124
ultimate periodicity, 179
union, 162

DFA Transition function, 121



464 Index

Diagonalization, 39
proof, 41

DIMACS format, 337
Diophantine, 360
Disambiguation , 226
Disjunctive normal form, 332
DNF, 332
DNF to CNF, 333
Dog, 37

Fifi, 37
Howard, 37

Dominance relation, 62
DPDA and NPDA , 235
Duality

between ∀ and ∃, 80

Eclosure, 144
Effective computability, 272
Effective procedure, 27
Effectively computable, 27
EG, 421

recursion, 421
Elementary productions, 233
Engineering mathematics, 2
Enumerative model checking, 419,

432
Equivalence, 58

class, 60
Equivalence class, 60
Error correcting DFA, 176
Exists

as infinite disjunction, 79
Exponential DFA, 139
Expressiveness, 428

Büchi automata, 428
CTL, 428
LTL, 428

FBI, 8
Final state, 121
Finite regular language, 187
First-order logic, 79, 323
First-order validity, 326
Fixed-point, 95, 192

and automata, 101

equation, 95
immovable point, 95
least, 100
multiple, 100
of a Photocopying machine, 95
on a calculator, 95

Fixed-point iteration, 194
Fixed-points

greatest, 101
FOL

enumerable, 331
semi decidable, 331

Forall
as infinite conjunction, 16, 78

Formal methods, 8
disappearing, 13

Formal model, 2
Formal verification, 136, 155
Forward reachability, 193
Fred, 23, 93
Frontier , 218
Full contradiction, 209
Function, 22

1-1, 25
bijection, 26
computable, 27
correspondences, 26
domain, 22
gappiest, 100
injection, 25
into, 26
many to one, 25
non computable, 27
non-termination, 25
one to one, 25
onto, 26
partial, 25
range, 22
signature, 22
surjection, 26
total, 25

Function constant, 324

Gödel, 185
Game



Index 465

mastermind, 78
General CNF, 340
Generalized NFA, 170
GNFA method, 170
Grail, 151
|, 153
dot, 153
fa2grail.perl, 153
fmcment, 153
fmcross, 153
fmdeterm, 153
fmmin, 153
ghostview, 153
gv, 153
retofm, 153

Grail tool, 151
Greibach’s Theorem, 312

Halting Problem
diagonalization, 50

Halting problem, 301
Hamming distance, 176
Hampath, 358
Higher-order logic, 323
Hilbert, 185

23 problems, 185
first problem, 42
problems, 42

Hilbert style, 324
Hilbert’s problems, 42
History, 12

computation theory, 12
Homomorphism, 113

inverse, 114

ID, 124
Identity relation, 59
Iff, 76
Image, 23, 192, 193
Implication, 17

antecedent, 75
consequent, 75

Independent, 323
Individual, 324
Individuals, 79

Induction, 81
arithmetic, 82
complete, 82
noetherian, 84
structural, 81, 85

Inductive, 80
basis elements, 80
closed under, 81
constructor, 80
definition, 80
free, 81
least set, 81
set, 80

Inductive assertions, 247
Infinite loop, 25
Infinitely often, 394
Inherently ambiguous, 227
Input encoding, 353

strong NPC, 364
unary, 353

Instantaneous description, 124
Interior node , 218
Interleaving, 383
Interpretation, 323
Intractable, 345
Invariant, 192

checking, 192
Inverse homomorphism, 114, 168
Irredundant name, 24, 94
Isomorphism, 174
Ivory soap, 40

Kripke structure, 399

Lambda calculus, 3, 23
alpha conversion, 25
alpha rule, 24
associativity, 24
beta reduction, 24
beta rule, 24
bindings, 24
function application, 24
irredundant names, 24
syntactic conventions, 30
Y, 94

Language, 5, 105, 107, 125



466 Index

cardinality, 108
concatenation, 110, 111
context-free , 217
exponentiation, 111
homomorphism, 113, 114
intersection, 110
of a CFG, 218
prefix closure, 115
recursive definition, 101
regular, 125
reversal, 113
setminus, 110
star, 112
symmetric difference, 110
uncountably many, 108
union, 110
universality, 294

language
empty, 107

Language , 217
Lasso, 180
Lasso shape, 179
Lattice, 64
-, 64
all equivalences, 64
glb, 64
greatest lower bound, 64
illustration on 2S , 64
least upper-bound, 64
lub, 64

LBA, 128, 277
acceptance decidable, 313
undecidable emptiness, 313

Least and greatest FP, 425
Least fixed-point, 192
Left-end marker, 276
Left-to-right scan, 119
Lexical analyzer, 149
Lexicographic, 109

strictly before, 109
Lexicographic order, 109
LHS, 77
Linear bounded automata, 277
Linear bounded automaton, 128
Linear CFGs, 237

Linear-time temporal logic, 405
Livelock, 393
Liveness, 389
Logic
∃, 78
∀, 78
if-then, 75
axiom, 75
axiomatization, 324
complete, 323
first-order, 323
FOL validity, 326
higher-order, 323
Hilbert style, 324
if, 75
implication, 75
independent, 323
individual, 324
interpretation, 323
modus ponens, 325
predicate, 324
proof, 75, 323
propositional, 323
quantification, 78
rule of inference, 75
sound, 323
substitution, 325
theorem, 323
vacuous truth, 75
validity, 323
well-formed formula, 323
wff, 323
zeroth-order, 323

logic
⇒, 75

Logic/automaton connection, 186
Loop invariant, 253
LTL, 405

enumerative model checking, 432
expressiveness, 428
semantics, 406
syntax, 406

LTL vs. CTL, 405, 428

Machines



Index 467

with one stack, 4
with two stacks, 4
with zero stacks, 4

Map of USA, 39
Mapping reduction, 301
≤m, 301

Matrix, 372
Mechanical process, 27
Message sequence chart, 394
Millennium problem, 345
Minimalist approach, 3
Mixed left/right linear, 238
Model checking, 381

vs. testing, 387
BDD, 383
disappearing, 387
history, 381

Modular, 113
homomorphism, 113
substitution, 113

Modus ponens, 325
MSC, 394
Multiple fixed-points, 197
Myhill-Nerode Theorem, 174

Natural number
as set, 20

NBA, 428, 431
versus DBA, 431

Nested DFS, 434
NFA, 141

δ, 142
→, 146
ε moves, 143
ε-closure, 145
/, 142
/∗, 142
concatenation, 165
generalized, 170
homomorphism, 168
ID, 142
instantaneous description, 142
inverse homomorphism, 168
Kleene-star, 166
language, 147

prefix-closure, 169
reversal, 167
to DFA, 159
to Regular Expressions, 170
token game, 148
union, 162

NFA transition function, 141
NLBA, 277
Non-terminals , 217
Non-trivial property, 312
Nondeterminism, 135, 136, 387

abstraction, 387
over-approximation, 387
power of machines, 137

Nondeterministic Büchi automata,
431

Nondeterministic BA, 428
Nondeterministic machines, 137
NP, 345, 348, 350
NP decider, 350
NP verifier, 348
NP-completeness, 345
NP-hard, 350

Diophantine, 360
NPC, 345

2-partition, 364
3-SAT, 354
3-partition, 364
decider, 351
funnel diagram, 354
strong, 364
tetris, 364
verifier, 348

Number
ℵ0.5??, 43
cardinal, 37, 38
integer, 15
natural, 15
real, 15

Numeric
strictly before, 110

Numeric order, 110

Omega-regular language, 430
syntax, 430



468 Index

One-stop shopping, 224
Order

partial, 57
pre, 57

Over-approximation, 135

P, 345
P versus NP, 288
P vs. NP, 345
Parse tree , 218
Parser, 217
PCP, 315

computation history, 318
dominoes, 315
solution, 315
tiles, 315
undecidable, 316

PDA, 4, 245, 253
/, 246
ID, 246
instantaneous description, 246
intersection with DFAs, 293
proving their correctness, 247
undecidable universality, 313

PDA acceptance, 247
by empty stack, 249
by final state, 247

PDA to CFG, 257
Periodic

ultimate, 76
Philosophers, 390
Photocopying machine

fixed-point, 95
image transformation, 95

Pigeon, 85
Pigeon-hole principle, 85
POS, 332
Post’s correspondence, 315
Power of computers, 5
Power of machines, 3, 62, 137
Pre-image, 192
Predicate constant, 324
Predicate logic, 324
Prefix, 372
Prefix closure, 115

Prenexing, 371
Presburger, 371

atomic, 371
conversion to automata, 376
encoding, 373
interpretation, 373
pitfall to avoid, 378
quantification, 376
sentences, 371
term, 371

Presburger arithmetic, 126, 370
Primed variable, 193
Primes, 363
Procedure, 3
Product of sums, 332
Production, 217

elementary, 219
Promela, 384

accept label, 394
never automaton, 394
proctype, 394
progress label, 394

Proof, 75, 323
reductio ad absurdum, 77
axiom, 75
by contradiction, 77
machine-checked, 441
mistakes, 439
model-checker, 441
of a statement, 75
reliability, 439
rule of inference, 75
theorem prover, 441

Proof by contradiction, 207
Property, 28
Propositional logic, 323
Proving PDAs, 247
Pumping

case analysis, 207
full contradiction, 209
stronger, incomplete, 209

Pumping Lemma, 205
complete, 205, 212
incomplete, 205
Jaffe, 212



Index 469

one-way, 205
quantifier alternation, 206
Stanat and Weiss, 213

Purely left-linear , 238
Purely right-linear , 238
Push-down automata, 245
Push-down automata , 234
Push-down automaton, 4
Putative queries, 10

Quantifier alternation, 206

RE, 134, 137, 295
closure, 134
Complementation, 138
DeMorgan’s Law, 138

Reachability
in graphs, 60
multiple fixed-points, 197

Recognize, 124
Recursion, 93

nonsensical, 94
solution of equations, 97
solving an equation, 94

Recursive definition, 77
Recursively enumerable, 295
Reflexive and transitive closure, 124
Reflexive transitive closure, 60
Regular, 125
Regular Expression

to NFA, 169
Regular expression, 137
Regular expressions, 134
Regular language

closure properties, 211
Regular set

closure properties, 211
Regular sets, 211
Regularity, 211

preserving operations, 211
Rejecting state, 119
Relation, 28

irr, 53
non, 53
antisymmetric, 55

asymmetric, 55
binary, 28, 53
broken journey, 56
co-domain, 29
complement, 29
domain, 29, 53
equivalence, 58
functional, 30
identity, 59
intransitive, 56
inverse, 29
irreflexive, 54
non-reflexive, 55
non-symmetric, 55
non-transitive, 57
partial functions as, 30
partial order, 57
preorder, 57
reflexive, 54
restriction, 29, 60
short cut, 56
single-valued, 30
symmetric, 55
ternary, 29
total, 58
total functions as, 30
total order, 58
transitive, 56
unary, 28
universal, 59

Resistor, 68
Respect, 65, 113

concatenation, 113
operator, 65

Reverse, 238
of a CFG, 238
of a CFL, 238

RHS, 77
Rice’s Theorem

corrected proof, 311
failing proof, 310

Rice’s theorem, 309
partition, 309

Robustness of TMs, 276
Run, 105



470 Index

Russell’s paradox, 17, 21

Safety, 389
SAT solver, 338
Satisfiability, 331

2-CNF, 341
Scanner, 149

telephone number, 149
Schöenfinkeled form, 30
Schröder-Bernstein Theorem, 43

Nat → Bool, 44
all C programs, 44

Second-order logic, 79
Sentence , 218
Sentential form , 218
Sequence, 105
Set, 16

Real versus Nat, 43
cardinality, 37
complement, 20
comprehension, 16
countable, 38
empty, 16
intersection, 19
numbers as, 20
powerset, 16, 22
proper subset, 19
recursively defined, 18
subtraction, 19
symmetric difference, 20
union, 19
unique definition, 18
universal, 18, 19

Skolem constant, 326
Skolem function, 326
Skolemization, 326
Solving one implies all, 11
SOP, 332
Sound, 323
SPIN, 384

interleaving product, 394
message sequence chart, 394
MSC, 394
property automaton, 394

Stack, 128

single, 128
two, 128

Start symbol , 217
State

accepting, 121
black hole, 123
final, 121

State explosion, 383
State transition systems, 192
String, 105

ε, 106
length, 107
substr, 107
concatenation, 107
empty, 106
in living beings, 106
lexicographic order, 109
numeric order, 110
reversal, 113

String classifier, 124
Strong NP-completeness, 364
Strongly NP-complete, 364
Structural induction

proof by, 81
Substitution, 325
Sum of products, 332
Symbol, 105, 107

bounded information, 107
Symbolic model checking, 421

Tape, 275
doubly infinite, 275
singly infinite, 275

Telephone number NFA, 149
Temporal logic, 382
Term, 68
Terminals , 217
Testing computers, 9
Tetris, 364
Theorem, 323
Theorem prover, 73

ACL2, 74
floating point arithmetic, 75
Flyspec project, 74

Therac-25, 8



Index 471

Tic-tac-toe, 198
TM, 274

deterministic, 274
nondeterministic, 274
robust, 276

TR, 108, 295
Transition function, 124

δ, 121
δ̂, 124
for strings, 124
total, 121

Transition systems, 192
Triple, 21
Trivial partition, 309
Tuple, 21
Turing machine, 2, 128
Turing recognizable, 108, 295
Turing-Church thesis, 272
Two stacks + control = TM, 276
Twocolor, 347
Type, 20

versus sets, 20

Ultimate periodicity, 179, 181
Ultimately periodic, 76
Unambiguous, 10
Unique definition, 18

function, 77, 94
functions, 82
sets, 18

Uniqueness, 77
Universal relation, 59
Unsatisfiability core, 340
Unsatisfiable CNF, 340
Until

GFP, 427
LFP, 426
recursion, 425

Vacuously true, 75
Valid, 323
Validity, 326

undecidable, 329
Variable ordering, 190
Venus probe, 267
Verifier, 348

Weird but legal C program, 44
Well-formed formula, 323
Well-founded partial order, 84
Well-parenthesized, 224
well-parenthesized, 215
WFF, 323
What if queries, 10
Wild-card, 137

Y function, 96

Zchaff, 338
Zeroth-order logic, 323


