
CS 3100 – Models of Computation – Fall 2011
This assignment is worth 10% of the total points for assignments

100 points total

October 3, 2011

Assignment 5 Solution

1. (25 points total) – Audio Automaton! Go to http://www.learnmorsecode.com/.
(If you are not familiar with Morse code or need a refresher, listen to
http://www.learnmorsecode.com/atozslow.mp3 and behave as a human FSM for a while, recognizing
when you hear a through z.) Answer the following questions.em

(a) (2 points) Suppose you are charged with building a finite-automaton that recognizes any sequence
of spacer-terminated letters. (Note that I wrote my name above where each letter was followed by a
spacer.) Then, would you prefer to build an NFA or a DFA, and why? (One sentence.)

Answer: Let IF stand for a state name that is initial and final, and F0, F1,.. be state names for
final states. Let a state name I stand for an initial (but not final) state. States not starting with an
I or an F are non-initial and non-final.
Now let me show you how to draw the transitions for E and S.
IF we allowed empty sequences, THEN it really does not matter: we can go as follows.

IF - 0 -> dot1
IF - 1 -> "decode similarly" (I’m just going to pursue . and ... in this illustration)

dot1 - 0 -> dot2
dot1 - 2 -> IF ; going to accept an E

dot1 - 0 -> dot3
dot3 - 0 -> IF ; going to accept an S

BUT if we are not going to accept empty sequences of blank-terminated-letters, then a DFA like this
won’t do; instead, we would do something like this:

I - 0 -> dot1
I - 1 -> "decode similarly" (I’m just going to pursue . and ... in this illustration)

dot1 - 0 -> dot2
dot1 - 2 -> F ; going to accept an E , but now transition to a new state F ..

; that will serve as a "pseudo initial" state now on

1



dot1 - 0 -> dot3
dot3 - 0 -> F ; going to accept an S , and transition to F

F - 0 -> dot1
F - 1 -> "decode similarly" (I’m just going to pursue . and ... in this illustration)

In other words, we will be transitioning to a state F and from then only revisit F (never come back
to I).

(b) (15 points) Let 0 model “Dit” (or .), 1 model “Dah” (or -), and 2 model the spacer between two
letters. Draw, using JFLAP, a *FA corresponding to the Morse-code decoding tree in
http://www.learnmorsecode.com/.
Please restrict your *FA to just A through Z. Do not encode anything else.
ANSWER: Finish drawing as above. I’ll provide some more of this DFA below. I’m going to choose
an NFA. I’ll also illustrate A-E for you. This is the NFA description:

I - 0 -> S0
I - 1 -> S1

S0 - 2 -> F ; recognize an E
S0 - 1 -> S01
S01 - 2 -> F ; recognize an A

S1 - 0 -> S10

S10 - 0 -> S100
S10 - 1 -> S101

S100 - 0 -> S1000
S100 - 2 -> F ; recognize D

S101 - 0 -> S1010

S1010 - 2 -> F ; recognize C

S1000 - 2 -> F ; recognize B

F - epsilon -> I

(c) (1 point) What is the alphabet of this *FA?
ANSWER: { 0, 1, 2}

(d) (2 points) What is the language of the above *FA, if you just considered A-E (we don’t want to
put through writing it for A-Z, so A-E will suffice)? Think carefully and write it down as a regular
expression.

2



ANSWER: I’ll use “A” to stand for 01 (note that “A” itself does not include the spacer). Then the
language is (A2 + B2 + C2 + D2 + E2)+. Note that the regular expression R+ is the same as RR*.

2. (35 points total) – Help USPS Avoid Chapter-11!

(a) Let L1 = {03n | n ≥ 0}, and let each string s1 in L1 represent a stamp of value equal to the length
of s1.

(b) Let L2 = {05n | n ≥ 0}, and let each string s2 in L2 represent a stamp of value equal to the length
of s2.

(c) (2 points) Write L1 as the Kleene-star of a language called l1. What is l1?
ANSWER: l1 = {000}
Write l1 down as a mathematical set.

(d) (1 points) Similarly write down l2 corresponding to L2.
ANSWER: l1 = {00000}

(e) (6 points) Now define L3 = ((L1)∗ (L2)∗)∗. Explain the contents of L3 in one English sentence,
and also draw an NFA for L3 using JFLAP.
ANSWER: Apply the star construction to the above language. This is all strings formable by
concatenating blocks of three 0 and blocks of five 0.

(f) (4 points) The contractor claims that L3 models all possible postage rates people might ever want
to create (assuming that stamps are micro-miniaturized so that you can put a lot of them on an
envelope). This means that each string in L3 has as many 0s as the postage value one may want to
affix to an envelope. Argue that L3 has all strings of length ≥ some X ≥ 0. What is the smallest
value of X, and why?
ANSWER: X = 8. The contractor is wrong. Strings of length 1, 2, 4, and 7 can’t be realized.

(g) (12 points) Show that the contractor is lying, by drawing an NFA for all stamp values that cannot
be created using only 3-cent and 5-cent stamps (e.g., if a 4-cent stamp cannot be created, your NFA
must accept a string of four 0s). Assume of course that you can create a 0-cent stamp by forgetting
to put any stamp at all! Present this NFA as a JFLAP drawing. We want the NFAs to be not
bloated (a few extra states are OK – nothing in excess).
ANSWER: Draw an NFA that accepts sequences of 0s of lengths 1, 2, 4, and 7.

(h) (5 points) Draw, using JFLAP, a DFA for all stamp denominations that can be made. E.g., if
6-cents can be made, the DFA must accept a string of length 6.
ANSWER: Draw a DFA that accepts sequences of 0s of lengths 0, 3, 5, 6, 8, and all higher than 8.

(i) (5 points) Draw, using JFLAP, a DFA for all stamp denominations that cannot be made. E.g.,
if 4-cents cannot be made, the DFA must accept a string of length 4. How do these two DFAs in
parts 2h and 2i relate to each other? Write down a sentence describing the DFA complementation
procedure.
ANSWER: Complement the above DFA.

3. (40 points) – Help Leika Launch Successfully! Leika dog is awaiting space launch, and your job
as the designer of the launch-control finite automaton is to keep Leika safe. Everything is going well if
the automaton keeps receiving Ys in Morse-code (Y=1011). (No need to consider a spacer, for simplicity.)
Unfortunately, the launch controller gets so much static that you must be willing to tolerate up to two
bit errors (if you crash the launch controller upon the first error, Leika may be in danger). This means:

3



(a) If you get YYY..Y?YY..Y?YYY...(only Ys now) where ? is a four-bit sequence with a one-bit error
somewhere, the automaton must accept. For example the first ? may be 1111 and the second ? may
be 0011. Thus, we can bave one Y corrupted and then another, but that’s all!

(b) If you get YYY..Y!YYY...(only Ys now) where ! is a four-bit sequence with a two-bit error some-
where, the automaton must accept. For example the ! may be 0111, but after that, you must have
only Ys.

(c) The best case of course is YYY...(only Ys here), the automaton must accept.

Write down a regular expression encompassing Case 3c, Case 3b, and Case 3a above.

(a) There must be one sub-regular expression that deals with Case 3c.

(b) There must be one sub-regular expression that deals with Case 3b.

(c) There must be one sub-regular expression that deals with Case 3a.

(d) The whole regular expression (RE) must be obtained by using the RE union operation on the above
three sub-REs.

(e) The repetition inside each sub-RE must be achieved using the RE Kleene-star operation. Thus, for
example, to repeat Y, you must Kleene-star the 1011 pattern.

(f) Even the different cases of errors must be accomplished using the RE union construction.

ANSWER: I’ll use Y as an abbreviation as introduced above. I’ll further use ?0, ?1, ?2, and ?3 for the
four 1-bit error cases, and ! to represent the single two-bit error case. Then the desired RE is

Y* + Y* (?0+?1+?2+?3) Y* (?0+?1+?2+?3) Y* + Y* ! Y*

4. (20 EXTRA points – due same time as the rest): Draw a DFA for the above language. Explain
your construction approach.

ANSWER: Will draw in class.

4


