Models of Computation

Ganesh Gopalakrishnan

Aug 23, 2011



Table of contents

General Announcements
Basics, Motivations
Approach to this class

Summary of notesl.pdf
Why study Computation?
Learning Objectives
Formal Notions of Computation
Minimalist Approach
Notions of Hardness
Correctness Checking and Computer-Aided Verification
Proof methods
Practical Proof methods



Announcements

» This course covers concepts from Automata Theory,
Computability, Logic, and Reasoning about Programs

» We will use Python and Functional Programming heavily for
much of the course

» There will be other tools introduced in the course
» Details about exams and grading are online

» There will be a course project worth half of your final-exam
points

» The final exam will also examine your project to some extent;
but generally each exam covers portions since the previous
exam or the beginning of the course, whichever is more recent.



Checklist

» Send email to peterlee@cs.utah.edu with these details:

» Subject: Preferred Email Address
» Body: Just your preferred email address

Please do not use personal email addresses in future.
(All emails requesting help must be sent to teach-cs3100).

» Login to cade machines and make sure that you can run
simple Python3 programs

» TAs: Set up the score lookup facility
» TAs: Set up handin for Assignment 1, due 8/30/11



Learning Objectives

» To understand what “computation” means

» Learn how to compare the “power” of various computers (or
computataional devices)

» Build and experiment with Automata and Machines that
operate on textual information

Learn Mathematical Logic
Study Computability and Complexity

Be able to appreciate why program testing is hard

vV v. v Y

Be able to appreciate how in some cases, it may be rendered
easier

» Build up your foundations with respect to all sorts of
information processing systems that are all syntax/text based

We now present some questions that this course will help you
grapple with (or at least ask with sufficient confidence)



How to extract data from spreadsheets...

» ...and do it without errors

» Panko (2009) summarized the results of seven field audits in
which operational spreadsheets were examined, typically by an
outsider to the organization. His results show that 94% of
spreadsheets have errors and that the average cell error rates
(the ratio of cells with errors to all cells with formulas) is
5.2% http://wuw.strategy-at-risk.com/2009/03/03/
the-risk-of-spreadsheet-errors


http://www.strategy-at-risk.com/2009/03/03/the-risk-of-spreadsheet-errors
http://www.strategy-at-risk.com/2009/03/03/the-risk-of-spreadsheet-errors

Bioinformatics and sequence matching...

» Bioperl http://en.wikipedia.org/wiki/BioPerl

» Biopython http://news.open-bio.org/news/2011/08/
biopython-1-58-released

» Python Regexp Testing
http://kodos.sourceforge.net/about.html


http://en.wikipedia.org/wiki/BioPerl
http://news.open-bio.org/news/2011/08/biopython-1-58-released
http://news.open-bio.org/news/2011/08/biopython-1-58-released
http://kodos.sourceforge.net/about.html

How to detect E-Cashier vulnerabilities...

» ...and prevent vulnerabilities through formal analysis

» (Google “How to shop for free online”) http://research.
microsoft.com/apps/pubs/default.aspx?7id=145858


http://research.microsoft.com/apps/pubs/default.aspx?id=145858
http://research.microsoft.com/apps/pubs/default.aspx?id=145858

Why Software is “Eating” the World...

» ...and how to build and test these machines

» Google “Andreessen Eating” (to locate his WSJ article)
http://online.wsj.com/article/
SB10001424053111903480904576512250915629460 .html

» Importance of debugging software formally


http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html

The quest for supercomputers

» Even the most powerful of computers

» Top 500 computers: http://www.top500.o0rg/
» Troubled waters: (Blue Waters: http://www.theregister.
co.uk/2011/08/08/ibm_kills_blue_waters_super/)

» ...grapple with the same fundamental questions as this Turing
machine:

» (A mechanical Turing machine) http://www.youtube.com/
watch?v=E3keLeMwfHY&feature=topics


http://www.top500.org/
http://www.theregister.co.uk/2011/08/08/ibm_kills_blue_waters_super/
http://www.theregister.co.uk/2011/08/08/ibm_kills_blue_waters_super/
http://www.youtube.com/watch?v=E3keLeMwfHY&feature=topics
http://www.youtube.com/watch?v=E3keLeMwfHY&feature=topics

Make it more hands-on

You learn the concepts through declarative programming
We will use a subset of Python

I'll teach you the theory part through lecture notes

vV v v Y

Assignments: theory, Python programming, other applied
projects

» Final course project: gives you a chance to use some of these
ideas



Computation: Foundation of Modern Society

1. We rely on computers for everything

2. We need tools to reason about computers (hardware and
software) to make sure that they are working correctly

3. We need to understand the limits of computers and
computation (and how to define these ideas)



Objectives

1. Learn to design and experiment with various automata
(prerequisite for your future classes such as Compilers)

2. Become proficient in basic mathematical logic

3. Learn how to write proofs and believe in proofs you write (and
to learn first-hand how brittle proofs can be - much like
programs can be - if you leave 'holes’ in them)



Formal Notions of Computation

» Turing machines (will study)

» Lambda calculus (will study when you write functional
programs)

» Other formal systems (Rewrite systems - aka Thue systems,
Counter machines, etc.)



Minimalist Approach

Theoreticians seek the smallest number of concepts using which to
state ideas

> State (the " Control” memory)

» State Transition

» Alphabet

» Additional memory needed if you want more computing power

» One stack - gives you Push-down automata
» Two stacks - gives you Turing machines, or everything



Hardness

» How hard are very hard problems (programs that may even
loop, or mathematical functions for which there can't exist
programs to implement them.. )

» Non Recursively Enumerable (Non RE)

» RE (programs exist, but may loop)

» Recursive (halting programs guaranteed - may take too much
time/space though)

» How hard are problems within the Recursive family?

» NP-complete
» Polynomial



Computer Aided Verification

» To express correctness, we need to employ mathematical logic
» Logics are intimately related to automata

» Logics are workhorses in the industry now - e.g. Decidable
(Recursive) logic engines now routinely poke holes in browsers,
and have even shown how to shop free online (a result that
has caused patches in very reputed E-commerce sites)

» We will obtain a taste for logic through

» reading the above inspiring papers
> using some of these tools
» If time permits, writing a simple tool yourself (BDD-based)



Reduction Proofs (using Paper/Pencil)

Reduction arguments: Gang up problems into a set so that when
one day you solve one problem, you have a solution to all problems
in that set



Proofs in Practice

Use automated tools!



	General Announcements
	Basics, Motivations
	Approach to this class
	Summary of notes1.pdf
	Why study Computation?
	Learning Objectives
	Formal Notions of Computation
	Minimalist Approach
	Notions of Hardness
	Correctness Checking and Computer-Aided Verification
	Proof methods
	Practical Proof methods


