
Checklist of all the things you’ve learned in CS 3100, Fall 2010
Also a small Mapping Reduction proof at the end

Handed out 12/9/10

Final Exam: The final exam will have closed-book multiple-choice short ques-
tions on all these topics below, for 50 minutes. Then after a 5-minute break,
you’ll be given a 60-minute long open-book exam on all the bold-faced topics
plus the mapping reduction proof at the end (or small variants of this mapping
reduction).

[] Designing simple FAs and Reg Exps

[] Identify strings in a given Reg Exp

[] Basic notions about sets and strings (Powerset etc)

[] FA, Reg Exp conversions

[] DFA to Reg Exp conversion

[] DFA minimization (studied much later)

[] FA operations (intersection, reversal, etc), and whether closure is guaran-
teed

[] Why some languages are not regular; Pumping lemma

[] Alternate characterization of regularity: Ultimate periodicity
and “lasso shapes” for minimal DFA (studied much later) over a singleton
alphabet

[] Midterm examined the above, esp. exp growth of NFA/DFA conversion,
etc.

[] Flex experiments

[] PDA design using JFLAP; NPDA, DPDA

[] What JFLAP helps you do: freeze configurations, watch non-determinism
evolve, Pumping Lemma tutor, conversions from DFA to RE, etc.

[] Designing simple CFGs

[] CFG consistency, completeness, simplification

[] Pumping Lemma for CFLs

[] Why certain CFLs are not closed under complementation

[] Parsing using dynamic programming using the Chomsky normal form of
a CFG (the table filling idea)

[] CFG to PDA and back

[] The Chomsky normal form; why it guarantees certain derivation lengths

[] General story of pumping: not an iff theorem

[] Yacc based design of calculator

[] Linearity of CFGs, and what it means

[] PDA and CFG operations (union, intersection, etc.) and whether closure
is guaranteed

[] The LBA classification (briefly) and context sensitive languages
[] Designing simple Turing machines (DTM, NDTM, multi-tape

TM).
[] Language classifications: RE, Recursive, etc. and what it means
[] Basic results: Universality of CFGs being undecidable; emptiness being

decidable; status of grammar equivalence (decidable or not)
[] Printer TM and decider TM, conversions
[] Self referential statements, self-denying TMs STM being undecidable
[] Favorite sets : ATM etc. and status of decidability
[] Diagonalization. Use in cardinality comparison
[] Notion of onto and into functions
[] Schröder-Bernstein Theorem and its uses to compare cardinali-

ties
[] Cardinality based arguments to show there are non-RE languages
[] Proof of undecidability of the Halting problem. Two approaches: diago-

nalization proof, and proof based on STM .
[] Time-complexity classes NP, P, NPC. What a non-deterministic

algorithm is.
[] Mapping reductions: what they are.
[] Mapping reductions for showing undecidability
[] Mapping reductions for showing NP-completeness: the SAT to

Clique reduction.
[] BDDs for simple Boolean functions.
[] BDDs as minimal DFA
[] BDDs used to express Logic
[] BDDs to synthesize circuits using multiplexors
[] How many Boolean functions over N inputs
[] How to use a 4-to-1 mux to implement all possible 2-input Boolean func-

tions
[] Variable ordering
[] What it means for a problem to be NP-complete
[] How Regular, DCFL, CFL, CSL, NPC, Decidable, RE, non-RE

are contained.

Show that EQTM is not RE.
Proof: Build two machines M1 which always rejects and M2 which accepts any
x so long as M accepts w. Then we have achieved ATM ≤m EQTM . This means
ATM ≤m EQTM . Thus, EQTM can’t be RE (else we will have an enumerator
for ATM .

2

