HASH TABLES
administrivia...
- assignment 9 is due on Friday

- assignment 10 will go out on Thursday

- midterm on Thursday
Assignment 7: Symbol Matching

Assignment 7 scores

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>36</td>
</tr>
<tr>
<td>11-20</td>
<td>2</td>
</tr>
<tr>
<td>21-30</td>
<td>1</td>
</tr>
<tr>
<td>31-40</td>
<td>9</td>
</tr>
<tr>
<td>41-50</td>
<td>13</td>
</tr>
<tr>
<td>91-100</td>
<td>137</td>
</tr>
</tbody>
</table>
last time...
- we can add **weight** to each edge
 - a higher weight indicates a more costly step

- **weighted path length** is the sum of all edge weights on a path

- cheapest is not always the shortest!

- will regular BFS find the cheapest path?
- **Dijkstra’s algorithm** finds the *cheapest* path

- keep track of the total path cost from start node to the current node

- cost of path to next node is total cost so far plus weight of edge to next node

- instead of traversing nodes in the order they were encountered, traverse in order of cheapest total cost first
Dijkstra(Node start, Node goal) {
 initialize all nodes’ cost to infinity

 PQ.enqueue(start)
 while(!PQ.empty()) {
 curr = PQ.dequeue()

 if(curr == goal) {return} // done!

 curr.visited = true

 foreach unvisited neighbor n of curr: {
 if(n.cost > curr.cost + edgeweight {
 PQ.enqueue(n) || update n’s position in PQ
 n.cameFrom = curr
 n.cost = curr.cost + edgeweight
 }
 }
 }
}
today...
- quick review
- quick exercise
- mapping to arrays
- hash table
- hash function
- collisions, probing, & chaining
- assignment 10 details
quick review
-arrays (and ArrayLists)
 -random access
 -insert & delete: $O(N)$

-linked lists
 -linear access
 -insert & delete: $O(c)$

-binary search trees
 -everything: $O(\log N)$
 ... must be balanced

-stacks
 -everything: $O(c)$
 ... limited to top item

-queues
 -everything: $O(c)$
 ... limited to front and back
<table>
<thead>
<tr>
<th></th>
<th>Access</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrays / ArrayLists</td>
<td>$O(c)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>must know size ahead of time</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>$O(N)$</td>
<td>$O(N)$ or $O(c)$ on ends</td>
<td>$O(N)$ or $O(c)$ on ends</td>
<td>can allocate new items on demand</td>
</tr>
<tr>
<td>Binary Search Trees</td>
<td>$O(logN)$</td>
<td>$O(logN)$</td>
<td>$O(logN)$</td>
<td>must be balanced</td>
</tr>
<tr>
<td>Stacks</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>access limited to top</td>
</tr>
<tr>
<td>Queues</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>access limited to front / back</td>
</tr>
</tbody>
</table>
quick exercise
What if we want a data structure that holds integers, and has constant time insertion & deletion?
<table>
<thead>
<tr>
<th></th>
<th>Access</th>
<th>Insertion</th>
<th>Deletion</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Arrays / **</td>
<td>O(c)</td>
<td>O(N)</td>
<td>O(N)</td>
<td>must know size ahead of time</td>
</tr>
<tr>
<td>ArrayLists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked Lists</td>
<td>O(N)</td>
<td>O(N) or O(c) on ends</td>
<td>O(N) or O(c) on ends</td>
<td>can allocate new items on demand</td>
</tr>
<tr>
<td>Binary</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td></td>
</tr>
<tr>
<td>Search Trees</td>
<td></td>
<td></td>
<td></td>
<td>must be balanced</td>
</tr>
<tr>
<td>Stacks</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to top</td>
</tr>
<tr>
<td>Queues</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to front / back</td>
</tr>
<tr>
<td></td>
<td>Access</td>
<td>Insertion</td>
<td>Deletion</td>
<td>notes</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Arrays / ArrayLists</td>
<td>O(c)</td>
<td>O(N)</td>
<td>O(N)</td>
<td>must know size ahead of time</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>O(N)</td>
<td>O(N) or O(c) on ends</td>
<td>O(N) or O(c) on ends</td>
<td>can allocate new items on demand</td>
</tr>
<tr>
<td>Binary Search Trees</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>must be balanced</td>
</tr>
<tr>
<td>Stacks</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to top</td>
</tr>
<tr>
<td>Queues</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to front / back</td>
</tr>
<tr>
<td></td>
<td>Access</td>
<td>Insertion</td>
<td>Deletion</td>
<td>notes</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Arrays / ArrayLists</td>
<td>$O(c)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>must know size ahead of time</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>$O(N)$</td>
<td>$O(N)$ or $O(c)$</td>
<td>$O(N)$ or $O(c)$</td>
<td>can allocate new items on demand</td>
</tr>
<tr>
<td>Binary Search Trees</td>
<td>$O(logN)$</td>
<td>$O(logN)$</td>
<td>$O(logN)$</td>
<td>must be balanced</td>
</tr>
<tr>
<td>Stacks</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>access limited to top</td>
</tr>
<tr>
<td>Queues</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>access limited to front / back</td>
</tr>
<tr>
<td></td>
<td>Access</td>
<td>Insertion</td>
<td>Deletion</td>
<td>notes</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Arrays /</td>
<td>O(c)</td>
<td>O(N)</td>
<td>O(N)</td>
<td>must know size ahead of time</td>
</tr>
<tr>
<td>ArrayLists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked Lists</td>
<td>O(N)</td>
<td>O(N) or</td>
<td>O(N) or</td>
<td>can allocate new items on demand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(c) on ends</td>
<td>O(c) on ends</td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>must be balanced</td>
</tr>
<tr>
<td>Search Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacks</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to top</td>
</tr>
<tr>
<td>Queues</td>
<td>O(c)</td>
<td>O(c)</td>
<td>O(c)</td>
<td>access limited to front / back</td>
</tr>
</tbody>
</table>
-constant time insertion, deletion, and random access

-we know:
 -possible range of integers is $[0 \ldots \text{MAX_INT}]$

-what is a naïve, brute-force solution?
 -hint: use an array
- create a gigantic array of size \texttt{MAX_INT}

- initialize everything to \(-1\)

- when inserting a number \(n\), put it in the array at index \(n\)

- when accessing a number \(n\), check if index \(n\) is equal to \(-1\) or not

- when deleting a number \(n\), set array at index \(n\) to \(-1\)
- create a gigantic array of size \(\text{MAX_INT} \)

- initialize everything to \(-1\)

- when inserting a number \(n \), put it in the array at index \(n \)

- when accessing a number \(n \), check if index \(n \) is equal to \(-1\) or not

- when deleting a number \(n \), set array at index \(n \) to \(-1\)

Does this fulfill the constant time insertion, deletion, and access requirements?
- create a gigantic array of size MAX_INT

- initialize everything to \(-1\)

- when inserting a number \(n\), put it in the array at index \(n\)

- when accessing a number \(n\), check if index \(n\) is equal to \(-1\) or not

- when deleting a number \(n\), set array at index \(n\) to \(-1\)

DOES THIS FULFILL THE CONSTANT TIME INSERTION, DELETION, AND ACCESS REQUIREMENTS?

IS THIS REALISTIC???
mapping to arrays
-let’s try using a smaller array, and mapping large indices to the range of the smaller array

-assume range of possible items is \([0 \ldots 99]\)
 -and assume that we will have \(<\!<100\) items

-assume array size is only 10

-how can we make this work for integers?
-use the mod operator, \%
 -guarantee to return a number in the range
 \[0 ... (\text{size} - 1)\]

-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
- use the mod operator, %
 - guarantee to return a number in the range $[0 \ldots (\text{size} - 1)]$
 - mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90

<table>
<thead>
<tr>
<th>array:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
-use the mod operator, %
 -guarantee to return a number in the range [0 ... (size - 1)]

-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th>12</th>
<th></th>
<th>15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
-use the mod operator, `%`
- guarantee to return a number in the range
 \[0 \ldots (\text{size} - 1)\]

-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90

array:		12		15		17	
index:	0	1	2	3	4	5	6
	7	8	9				
-use the mod operator, \%
 -guarantee to return a number in the range
 \[0 \ldots (\text{size} - 1)\]

-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90
-use the mod operator,

- guarantee to return a number in the range
 \[0 \ldots (\text{size} - 1)\]

-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90

<table>
<thead>
<tr>
<th>array:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
-use the mod operator, \%
- guarantee to return a number in the range
 \[0 \ldots (\text{size} - 1)\]
-mod the input value by the array size for new index

INSERT:
12, 15, 17, 46, 89, 90
what about data without natural indices?

- how can we do this for non-integer items?
 - integers have an obvious solution... use the integer itself as the index
 - what index should use for, say, a String?

- one solution is to somehow generate an integer from a string
 - length of string?
 - sum of all characters?
 - some combination of both?

- a method that generates an integer index given any object is called a hash function
hash table
hash table
- A **hash table** is a general storage data structure
 - also known as a **hash map**

- Insertion, deletion, and access are all **$O(c)$**
 - Unlike stacks and queues, can access all items!
 - These are fast! Many applications like databases

<table>
<thead>
<tr>
<th>Access</th>
<th>Insertion</th>
<th>Deletion</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
<td>$O(c)$</td>
</tr>
</tbody>
</table>
- underlying data structure is just an array

- requires that all data types inserted have some specified hash function

- hash tables implement an **associative array**
 - also known as a **dictionary**
 - collection of \((key, value)\) pairs
 - **keys**: underlying data
 - **values**: determined by a hash function
- hash functions will give us some *hash value* which we can map to a valid array index using `%`

- empty spots in the array are set to null

- use any hash value to instantly look-up the index of any item
 - insertion, deletion, and access: $O(c)$
 - *assuming the hash function is* $O(c)$!
hash functions
- a **hash function** is a function that takes any item as input and produces an integer as output

- always returns the same number for the same object

- if `object1.equals(object2)`
 - must return the same integer for both objects

- good hash functions return evenly distributed numbers for the input items

- *it is not required that two non-equal objects have different hash values*
Java’s `hashCode`

- every `Object` in Java has a method `hashCode`
- returns an integer based on the object
- default for this method (if you don’t override it) is to return the memory address of the object
- will not be very well-distributed if your items are contiguous in memory
hash collisions
-remember: *it is NOT required that two non-equal objects have different hash values*

- because of this, it is possible for two different objects to return the same hash values
 - this is called a **collision**

INSERT:
12, 15, 17, 46, 89, 90

<table>
<thead>
<tr>
<th>array</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>12</td>
</tr>
</tbody>
</table>
-remember: *it is NOT required that two non-equal objects have different hash values*

- because of this, it is possible for two different objects to return the same hash values
 - this is called a **collision**

INSERT:
12, 15, 17, 46, 89, 90, 92
-remember: *it is NOT required that two non-equal objects have different hash values*

-because of this, it is possible for two different objects to return the same hash values
 -this is called a **collision**

INSERT:

12, 15, 17, 46, 89, 90, 92

[Diagram showing collision in an array]

array: 90 12 15 46 17 89
index: 0 1 2 3 4 5 6 7 8 9

Collision! Where can we put 92?
linear probing

- probing is how to resolve collisions
 - we will start with linear probing

- when inserting, if the spot is already taken, simply step forward one index at a time until an empty space is found
 - and, then insert item in empty space

- when accessing, start at the hashed value index, and if this is not the item we are searching for, begin stepping forward until the item is found
 - what if we hit the end of the array?
 - when do we stop?
insert with linear probing

Collisions are resolved on inserts by sequentially scanning the table (with wraparound) until an empty cell is found.
insert with linear probing

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 89
HASH: 9
Insert with Linear Probing

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 89
HASH: 9

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>18</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 18
HASH: 8
Insert with Linear Probing

<table>
<thead>
<tr>
<th>array</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Insert: 89
Hash: 9

<table>
<thead>
<tr>
<th>array</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Insert: 18
Hash: 8

<table>
<thead>
<tr>
<th>array</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Insert: 49
Hash: 9

```plaintext
array: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [89]  
index: 0 1 2 3 4 5 6 7 8 9  

array: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [18] [89]  
index: 0 1 2 3 4 5 6 7 8 9  

array: [49] [ ] [ ] [ ] [ ] [ ] [ ] [18] [89]  
index: 0 1 2 3 4 5 6 7 8 9  
```
insert with linear probing

array:

index:

89

array:

index:

18 89

array:

index:

49 18 89

array:

index:

49 58 18 89

array:

index:

INSERT: 89
HASH: 9

INSERT: 18
HASH: 8

INSERT: 49
HASH: 9

INSERT: 58
HASH: 8
insert with linear probing

array: | | | | | | | | 89
index: 0 1 2 3 4 5 6 7 8 9

array: | | | | | | | 18 | 89
index: 0 1 2 3 4 5 6 7 8 9

array: 49 | | | | | | | 18 | 89
index: 0 1 2 3 4 5 6 7 8 9

array: 49 58 | | | | | | | 18 | 89
index: 0 1 2 3 4 5 6 7 8 9

array: 49 58 9 | | | | | | | 18 | 89
index: 0 1 2 3 4 5 6 7 8 9
access with linear probing

- if the table is not full, the item we seek, or an empty cell, will eventually be found

- cost?
 - recall that we are hoping for $O(c)$

- access operation follows the same path as insert... if empty cell reached, item not found

- how do we find 58?

array: 49 58 9 18 89
index: 0 1 2 3 4 5 6 7 8 9

search: 58
hash: 8
delete with linear probing

-on a delete, the actual item cannot be deleted from the table because items serve as placeholders during collision resolution

array: 49 | 58 | 9 | | | | | 18 | 89
index: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

DELETE: 89
HASH: 9
delete with linear probing

-on a delete, the actual item cannot be deleted from the table because items serve as placeholders during collision resolution

array: 49 58 9 18
index: 0 1 2 3 4 5 6 7 8 9

DELETE: 89
HASH: 9
delete with linear probing

-on a delete, the actual item cannot be deleted from the table because items serve as placeholders during collision resolution

HOW DO WE FIND 9?

array: 49 58 9 0 1 2 3 4 5 6 7 8 18
index: 0 1 2 3 4 5 6 7 8 9

DELETE: 89
HASH: 9
delete with linear probing

-on a delete, the actual item cannot be deleted from the table because items serve as placeholders during collision resolution

HOW DO WE FIND 9?

array: 49 58 9 □ □ □ □ □ □ 18 89
index: 0 1 2 3 4 5 6 7 8 9

- we must use **lazy deletion**, which marks items as deleted rather than actually removing them
delete with linear probing

-on a delete, the actual item cannot be deleted from the table because items serve as placeholders during collision resolution

-HOW DO WE FIND 9?

array: [49, 58, 9, _, _, _, _, _, 18, 89]
index: 0 1 2 3 4 5 6 7 8 9
deleted: F F F _ _ _ _ _ F T

-we must use **lazy deletion**, which marks items as deleted rather than actually removing them
performance

-if no collisions occur, then the performance of insert, delete, and access is ____

-to determine the real cost, define λ, the fraction of the table that is full
 -called the **load factor**
 $0 \leq \lambda \leq 1$

-for each probe into the table, the probability that spot is occupied is λ

-with these assumptions, the average number of cells examined on an insert is $1 / (1 - \lambda)$
 -if $\lambda = 0.5$, average of two cells examined
performance

- if no collisions occur, then the performance of insert, delete, and access is $O(c)$

- to determine the real cost, define λ, the fraction of the table that is full
 - called the load factor

 $0 \leq \lambda \leq 1$

- for each probe into the table, the probability that spot is occupied is λ

- with these assumptions, the average number of cells examined on an insert is $1 / (1 - \lambda)$
 - if $\lambda = 0.5$, average of two cells examined
clustering

-if an item’s natural spot is taken, it goes in the next open spot, making a cluster for that hash
 -*clustering* happens because once there is a collision, there is a high probability more will occur
 -thus, any item that hashes into a cluster will require several attempts to resolve the collision

-feedback loop:
 -the bigger the clusters are, the more likely they are to be hit
 -when a cluster gets hit, it gets bigger
quadratic probing

-probing is how to resolve collisions
-to address clustering, we will use quadratic probing

-if $\text{hash(key)} = H$, and the cell at index H is occupied:
 -try $H + 1^2$
 -then $H + 2^2$
 -then $H + 3^2$
 -and so on...
 -wrap around to beginning of array if necessary
insert with quadratic probing
insert with quadratic probing

| array: | | | | | | | | | 89 |
| index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

INSERT: 89
HASH: 9
insert with quadratic probing

array: index: array: index:
 0 1 2 3 4 5 6 7 8 9
 INSERT: 89
 HASH: 9

array: index: array: index:
 0 1 2 3 4 5 6 7 8 9
 INSERT: 18
 HASH: 8
insert with quadratic probing

<table>
<thead>
<tr>
<th>array</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

INSERT: 89
HASH: 9

<table>
<thead>
<tr>
<th>array</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

INSERT: 18
HASH: 8

<table>
<thead>
<tr>
<th>array</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>18 49</td>
<td></td>
</tr>
</tbody>
</table>

INSERT: 49
HASH: 9
Insert with Quadratic Probing

<table>
<thead>
<tr>
<th>array:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 89
HASH: 9

<table>
<thead>
<tr>
<th>array:</th>
<th>18</th>
<th>89</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

INSERT: 18
HASH: 8

<table>
<thead>
<tr>
<th>array:</th>
<th>49</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>18</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 49
HASH: 9

<table>
<thead>
<tr>
<th>array:</th>
<th>49</th>
<th>58</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>18</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>index:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

INSERT: 58
HASH: 8
Insert with Quadratic Probing

<table>
<thead>
<tr>
<th>Array</th>
<th>Index</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>9</td>
</tr>
<tr>
<td>[]</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>9</td>
</tr>
<tr>
<td>49 58</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>8</td>
</tr>
<tr>
<td>49 58 9</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>9</td>
</tr>
</tbody>
</table>
concerns...

-is quadratic probing guaranteed to find an open spot? can it search the same spot twice?

-suppose the array size is 16, and $\text{hash(key)} = 0$

\[
\begin{align*}
0 \mod 16 &= 0 \\
(0 + 1^2) \mod 16 &= 1 \\
(0 + 2^2) \mod 16 &= 4 \\
(0 + 3^2) \mod 16 &= 9 \\
(0 + 4^2) \mod 16 &= 0 \\
(0 + 5^2) \mod 16 &= 9 \\
(0 + 6^2) \mod 16 &= 4 \\
(0 + 7^2) \mod 16 &= 1
\end{align*}
\]
concerns...

-is quadratic probing guaranteed to find an open spot? can it search the same spot twice?

-suppose the array size is 16, and $hash(key) = 0$

\[
\begin{align*}
0 \mod 16 &= 0 \\
(0 + 1^2) \mod 16 &= 1 \\
(0 + 2^2) \mod 16 &= 4 \\
(0 + 3^2) \mod 16 &= 9 \\
(0 + 4^2) \mod 16 &= 0 \\
(0 + 5^2) \mod 16 &= 9 \\
(0 + 6^2) \mod 16 &= 4 \\
(0 + 7^2) \mod 16 &= 1
\end{align*}
\]

LIMITATION: AT MOST, HALF OF THE TABLE CAN BE USED TO RESOLVE COLLISIONS

ONCE TABLE IS HALF FULL IT IS DIFFICULT TO FIND AN EMPTY SPOT

...CALLED SECONDARY CLUSTERING
...solution!

- the following two guidelines guarantee that every spot will be examined at least once
 - ensure that the size of the array is a prime number
 - mapping a hash value to an array index will involved modding by a prime number!
 - ensure that the table is never more than 50% full \(\lambda < 0.5 \)

- guidelines also guarantee no cell is visited twice
 - proof is in the textbook
resizing the table

-since we now have the requirement that $\lambda < 0.5$, what do we do when we need to add another item?

-just like resizing an array, we resize the table to the next largest prime number

-instead of a simple copy-everything-over, all items must be rehashed
 -why?

-this is called rehashing
- quadratic probing does not eliminate the clustering problem

- but, secondary clustering is not as severe as primary clustering

- the only reason not to use quadratic probing is when maintaining a half-empty array is too costly

- can you think of an alternative for collision management?
separate chaining

- why not make each spot in the array capable of holding more than one item?
 - use an array of linked lists
 - hash function selects index into array
 - called separate chaining

- for insertion, append the item to the end of the list
 - insertion is $O(c)$ if we have what?

- accessing is a linear scan through the list
 - fast if the list is short
performance

- different definition of the load factor, \(\lambda_c \)
 \(\lambda_c = \text{average length of linked lists} \)

- therefore, access and delete operations scan \(\lambda_c \) items

- instead of rehashing when the table is half full, rehash when \(\lambda_c \) becomes large
 - analysis is required to find a good value

- rehashing is never *required* since lists can grow indefinitely, but it can be beneficial
assignment 10 details
you will implement a quadratic probing hash table AND a separate chaining hash table for Strings

-the constructors for these hash tables takes a HashFunctor object
 -recall that a functor is an object which encapsulates a method (just like Comparator)

-the HashFunctor defines a hash method, which implements a hash function

-you can create any number of different hash functions this way without changing any code in your hash table
 -yay for encapsulation!
-start thinking about…
-what is a bad hash function for Strings?
-what is a good hash function for Strings?

-remember, Strings are just a sequence of chars
- and a char is just a smaller int

-we can perform any operation or combination of ops on the small numbers (chars) that make up the String

-an example String hash function is in the book
- there are also a bunch of good ones on the web
next time...
- midterm on Thursday in class

- reading for next week
 - chapter 21 in book (*binary heaps*)

- homework
 - assignment 9 due Friday
 - assignment 10 out on Thursday, due next Thursday