BASIC SORTING, PART 2

cs2420 | Introduction to Algorithms and Data Structures | Spring 2016
administrivia...
- Assignment 3 is due tonight at midnight
- Assignment 4 is out
 - Requires pair programming
 - Due next Thursday
- Midterm 1 in 1.5 weeks
assignment.properties

name=Jake Pitkin
uid=u0123456
partner_name=Ryan Sargent
partner_uid=u0654321
submitted=false
How many hours did you spend on assignment 3?

A) <5
B) 5-10
C) 10-15
D) 15-20
E) >20
last time...
selection sort
the simplest sorting algorithm

insertion sort
good for small N
selection sort

1) find the minimum item in the unsorted part of the array
2) swap it with the first item in the unsorted part of the array
3) repeat steps 1 and 2 to sort the remainder of the array
selection sort

1) find the minimum item in the unsorted part of the array
2) swap it with the first item in the unsorted part of the array
3) repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?
void selectionSort(int[] arr)
{
 for(int i=0; i < arr.length-1; i++)
 {
 min = i;
 for(int j=i+1; j < arr.length; j++)
 if (arr[j] < arr[min])
 min = j;

 temp = arr[i];
 arr[i] = arr[min];
 arr[min] = temp;
 }
}

WHAT IS THE COMPLEXITY OF SELECTION SORT?
insertion sort

1) the first array item is the sorted portion of the array

2) take the second item and insert it in the sorted portion

3) repeat steps 1 and 2 to sort the remainder of the array
Insertion Sort

1) the first array item is the sorted portion of the array
2) take the second item and insert it in the sorted portion
3) repeat steps 1 and 2 to sort the remainder of the array

WHAT DOES THIS LOOK LIKE?
void insertionSort(int[] arr)
{
 for(int i=1; i < arr.length; i++)
 {
 index = arr[i];
 j = i;
 while(j>0 && arr[j-1]>index)
 {
 arr[j] = arr[j-1];
 j--;
 }
 arr[j] = index;
 }
}
void insertionSort(int[] arr)
{
 for(int i=1; i < arr.length; i++)
 {
 index = arr[i];
 j = i;
 while(j > 0 && arr[j-1] > index)
 {
 arr[j] = arr[j-1];
 j--;
 }
 arr[j] = index;
 }
}

WHAT IS THE COMPLEXITY OF INSERTION SORT?
unsortedness

- requires a measure of *unsortedness* for array

-inversion: a pair of array items that are out of order

| 45 | -3 | 9 | 76 | 11 | -8 | 0 |

How many inversions are there?
unsortedness

- requires a measure of *unsortedness* for array

-inversion: a pair of array items that are out of order

\[
\begin{array}{cccccccc}
45 & -3 & 9 & 76 & 11 & -8 & 0 \\
\end{array}
\]

How many inversions are there?

-sorting efficiency depends on how many inversions are removed per step
insertion sort complexity

each swap to the left removes one inversion…

…we must visit each item at least once \((N) \)…

…and we must undo \(I \) inversions

\[
\begin{array}{cccccc}
45 & -3 & 9 & 76 & 11 & -8 & 0 \\
\end{array}
\]

SWAP REMOVES ONE INVERSION

insertion sort is \(O(N+I) \)

HOW DO WE FIGURE OUT WHAT \(I \) IS?
today…
-measuring the complexity of insertion sort

-shellsort
insertion sort is $O(N+I)$

How do we figure out what I is?
worst case scenario...

-what are the number of inversions in the worst case?
-what *IS* the worst case?
worst case scenario...

- what are the number of inversions in the worst case?
- what *IS* the worst case?
- when every *unique pair* is inverted...

-3 0 9 11 45 76 8 76 45 11 9 0 -3 -8

INVERTED
worst case scenario...

- what are the number of inversions in the worst case?
 - what *IS* the worst case?
 - when every **unique pair** is inverted...

 ![Sequence of numbers showing inversion](image)

 - how many unique pairs are there?
worst case scenario...

-what are the number of inversions in the worst case?
-what is the worst case?
-when every unique pair is inverted...

76 45 11 9 0 -3 -8

- how many unique pairs are there?
- (hint: remember Gauss’s trick!)
worst case scenario...

- what are the number of inversions in the worst case?
- what *IS* the worst case?
- when every *unique pair* is inverted...

- how many unique pairs are there?
 -(hint: remember Gauss’s trick!)

\[(N+1) \times \frac{N}{2} = \frac{N^2 + N}{2}\]
insertion sort is $O(N+I)$

What is the worst-case complexity of insertion sort?

A) c
B) $\log N$
C) N
D) $N \log N$
E) N^2
F) N^3
insertion sort is \(O(N+I) \)

What is the best-case complexity of insertion sort?

A) \(c \)
B) \(\log N \)
C) \(N \)
D) \(N \log N \)
E) \(N^2 \)
F) \(N^3 \)
average case scenario...
average case scenario...

- assume that there is a 50% chance that any given pair is inverted

- average number of inversions = (number of pairs) / 2
average case scenario...

- assume that there is a 50% chance that any given pair is inverted

- average number of inversions = \((\text{number of pairs}) / 2\)

\[
\frac{\left(\frac{N^2 + N}{2}\right)}{2} = \frac{N^2 + N}{4}
\]
insertion sort is $O(N+I)$

What is the average-case complexity of insertion sort?

A) c
B) $\log N$
C) N
D) $N \log N$
E) N^2
F) N^3
recap...
selection vs insertion

<table>
<thead>
<tr>
<th></th>
<th>Worst:</th>
<th>Average:</th>
<th>Best:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Insertion</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
selection vs insertion

<table>
<thead>
<tr>
<th></th>
<th>WORST: $O(N^2)$</th>
<th>AVERAGE: $O(N^2)$</th>
<th>BEST: $O(N^2)$</th>
<th>AVERAGE: $O(N^2)$</th>
<th>BEST: $O(N)$</th>
</tr>
</thead>
</table>

Which one performs better in practice?

A) selection
B) insertion
summary

- an inversion is a pair of items that are out of order
 - a sorted array has 0 inversions
 - an average (and worst) array has $\sim N^2$ inversions

- thus, we must undo N^2 inversions

- to do better than $O(N^2)$ we must remove more than 1 inversion per step
 - (insertion sort only removes 1 inversion per step!)
what we want...

-a sorting algorithm that has subquadratic complexity

-swapping adjacent items removes exactly 1 inversion

what if we consider swapping nonadjacent pairs?

-removes inversions not involved with the swap
shellsort
the simplest subquadratic sorting algorithm
shellsort
insertion sort, with a twist

1) set the gap size to \(\frac{N}{2} \)

2) consider the subarrays with elements at gap size from each other

3) do insertion sort on each of the subarrays

4) divide the gap size by 2

5) repeat steps 2 — 4 until the gap size is <1
1) set the gap size to \(N/2 \)

2) consider the subarrays with elements at gap size from each other

3) do insertion sort on each of the subarrays

4) divide the gap size by 2

5) repeat steps 2 — 4 until the gap size is <1

WHAT DOES THIS LOOK LIKE?
HOW DO WE DESCRIBE INSERTION SORT WITH RESPECT TO SHELLSORT?
-each x-sort (for a gap x) is performing an insertion sort on x independent subarrays

- is also known as the *diminishing gap sort*

- Shell originally suggested gaps $\frac{N}{2}, \frac{N}{4}, \frac{N}{8}, \ldots, 1$
 - gap sequences in which consecutive gaps share no common factors have been shown to perform better
void shellSort(int[] arr) {
 for (gap = arr.length/2; gap > 0; gap /= 2) {
 for (i = gap; i < arr.length; i++) {
 val = arr[i];
 for (j = i-gap; j >= 0 && arr[j] > val; j -= gap) {
 arr[j+gap] = arr[j];
 }
 arr[j+gap] = val;
 }
 }
}
void shellSort(int[] arr)
{
 for(gap = arr.length/2; gap > 0; gap /= 2)
 {
 for(i = gap; i < arr.length; i++)
 {
 val = arr[i];
 for(j = i-gap; j >= 0 && arr[j] > val; j -= gap)
 arr[j+gap] = arr[j];
 arr[j+gap] = val;
 }
 }
}
void shellSort(int[] arr) {
 for (gap = arr.length/2; gap > 0; gap /= 2) {
 for (i = gap; i < arr.length; i++) {
 val = arr[i];
 for (j = i - gap; j >= 0 && arr[j] > val; j -= gap) {
 arr[j+gap] = arr[j];
 }
 arr[j+gap] = val;
 }
 }
}
void shellSort(int[] arr)
{
 for(gap = arr.length/2; gap > 0; gap /= 2)
 {
 for(i = gap; i < arr.length; i++)
 {
 val = arr[i];
 for(j = i-gap; j >= 0 && arr[j] > val; j -= gap)
 arr[j+gap] = arr[j];
 arr[j+gap] = val;
 }
 }
}
void shellSort(int[] arr)
{
 for(gap = arr.length/2; gap > 0; gap /= 2)
 {
 for(i = gap; i < arr.length; i++)
 {
 val = arr[i];

 for(j = i-gap; j >= 0 && arr[j] > val; j -= gap)
 {
 arr[j+gap] = arr[j];
 }
 arr[j+gap] = val;
 }
 }
}
void shellSort(int[] arr)
{
 for(gap = arr.length/2; gap > 0; gap /= 2)
 {
 for(i = gap; i < arr.length; i++)
 {
 val = arr[i];
 for(j = i-gap; j >= 0 && arr[j] > val; j -= gap)
 arr[j+gap] = arr[j];
 arr[j+gap] = val;
 }
 }
}
shellsort complexity

-worst case: $O(N^2)$ with Shell’s gaps, $O(N^{3/2})$ with better gaps

-average case: $O(N^{3/2})$ with Shell’s gaps, $O(N^{5/4})$ with better gaps

-proofs of these bounds are complicated
 -the $O(N^{5/4})$ bound is based on simulations only!

-insertion sort performs better the more sorted the array
 -remember, approaches $O(N)$ for a sorted array!
still, $O(N^{5/4})$ is an encouraging bound for the average case

for moderate N, this is better than $O(N \log N)$ algorithms

around $N=100K$, $O(N \log N)$ wins

best sorting algorithms are $O(N \log N)$

- $\log N$ suggests repeated dividing by 2
 - “divide and conquer”
shellsort complexity

- still, $O(N^{5/4})$ is an encouraging bound for the average case

- for moderate N, this is better than $O(N \log N)$ algorithms

- around $N=100K$, $O(N \log N)$ wins

- best sorting algorithms are $O(N \log N)$
 - $\log N$ suggests repeated dividing by 2
 - “divide and conquer”

 WHAT ALGORITHM DO WE KNOW OF THAT IS $\log N$?
shellsort complexity

- still, $O(N^{5/4})$ is an encouraging bound for the average case
- for moderate N, this is better than $O(N \log N)$ algorithms
- around $N=100K$, $O(N \log N)$ wins

-best sorting algorithms are $O(N \log N)$
 - $\log N$ suggests repeated dividing by 2
 - “divide and conquer”

WHAT ALGORITHM DO WE KNOW OF THAT IS $\log N$?

WHAT DOES THIS IMPLY ABOUT THE “CONQUER” STEP?
next time...
-reading
 - chapters 7 & 8.5 - 8.8

-homework
 - assignment 3 due today
 - assignment 4 out