Adding to a Sorted Sequence

What if you need to frequently find and insert
ordered items!

* Array: can find in O(log n) time, but takes O(n) time
to insert into the middle

* Doubly-linked list: can insert in O(1) time, but takes
O(n) time to find position

Adding to a Sorted Sequence

What if you need to frequently find and insert
ordered items!

* Array: can find in O(log n) time, but takes O(n) time
to insert into the middle

* Doubly-linked list: can insert in O(1) time, but takes
O(n) time to find position

A binary search tree can make both find and insert
O(log n) time

Binary Search Tree

Binary Search Tree

; An X-tree is either

; - empty

; — (make-node X X-tree X-tree)
(define-struct node (wvalue left right))

(define (leaf v) (make-node v empty empty))
(define (branch v 1 r) (make-node v 1 r))

(define num-tree
(branch 5
(branch 3
(branch 1 empty (leaf 2))
(leaf 4))
(branch 10

(branch 7 (leaf 6) empty)
(leaf 11))))

Binary Search Tree
; A dir 1is either 'too-big, 'too-small, or 'same

; btsearch X-tree (X -> dir) -> X-or-false
(define (btsearch t check)

(cond
[(empty? t) false]
[else
(define d (check (node-value t)))
(cond

[(eg? d 'too-big)

(btsearch (node-left t) check)]
[(eg? d 'too-small)

(btsearch (node-right t) check)]
[else (node-value t)])]1))

Binary Search Tree

See btsearch in btsearch.c

Binary Search Tree Inserts

; btinsert X-tree X (X -> dir) -> X-tree
(define (btinsert t v check)

(cond
[(empty? t) (leaf wv)]
[else
(define d (check (node-value t)))
(cond

[(eg? d 'too-big)
(branch (node-value t)
(btinsert (node-left t) v check)
(node-right t))]
[(eg? A4 'too-small)
(branch (node-value t)
(node-left t)
(btinsert (node-right t) v check))]
[else t])]))

Binary Search Tree Inserts

See btinsert in btsearch.c

Unbalanced Tree

Unbalanced Tree

10

Unbalanced Tree

11

Unbalanced Tree

Y
2
o

o

Balancing a Tree

Y

13

Balancing a Tree

14

Balancing a Tree

15

Balancing a Tree

2

KL

16

Balancing a Tree

Balancing a Tree

Balancing a Tree

2
5 2
00 0
@
&

Balancing a Tree

Balancing a Tree

OO
U@ ¢
G

AVL Trees

An AVL tree uses a particular balancing strategy

N

Define balance at @ as

height(‘) — height(‘)

After insert, a balance of 2 triggers rotations

22

AVL Trees

picture based onhttp://en.wikipedia.org/wiki/AVL tree

23

AVL Trees

Whenever balance

at‘ is +2
0

picture based onhttp://en.wikipedia.org/wiki/AVL tree

24

AVL Trees

Whenever balance

If balance at ‘ is ’
at is +2

<0

/ 0

ll

picture based onhttp://en.wikipedia.org/wiki/AVL tree

25

AVL Trees

picture based onhttp://en.wikipedia.org/wiki/AVL tree

26

AVL Trees

Whenever balance

at‘ is -2
) 0

picture based onhttp://en.wikipedia.org/wiki/AVL tree

27

AVL Trees

Whenever balance

If balance at ‘ is ‘
at is -2

>0

) 0

picture based onhttp://en.wikipedia.org/wiki/AVL tree

28

AVL Trees

See avl.c

29

AVL Rotation Code

if (get balance(t) == 2) {
/* need to rotate right */
tree left = t->left;

t->left = left->right;
left->right = t;

fix height(t);

fix height(left);
return left;

30

AVL Rotation Code

if (get balance(left) < 0) {
/* double right rotation */
tree left right = left->right;
left->right = left right->left;
left right->left = left;
fix height(left);
left = left right;

31

JFY1: Red—Black Trees

A red-black tree uses a similar but different
rebalancing strategy

It is often implemented with £or loops instead of
recusion, which is/was useful in some settings

32

JFYI: Splay Trees

A splay tree uses another balancing approach

Instead of rebalancing after an insert, a splay tree rotates
all lookups and inserts to the root

33

