Graphs

A graph is

* a set of **nodes**

* a set of **edges**

 each connecting two nodes
Graphs

A directed graph is

• a set of nodes

• a set of edges each connecting one node to another node

We’ll just use “graph” to mean “directed graph”
Graphs: Lists

At most one outgoing edge ⇒ list
Graphs: Trees

Reach each node in only one way ⇒ tree
Graphs: DAG

Can’t get to a node from itself ⇒

directed acyclic graph (DAG)
Graphs: Cycles

Can get to a node from itself ⇒ graph
Roots

Some nodes might be considered *roots* — often nodes that reach all others
Roots

Some nodes might be considered *roots* — often nodes that reach all others.

A graph containingly only trees is a *forest*.
Roots

Some nodes might be considered *roots* — often nodes that reach all others

Can reach all nodes from some root ⇒ a *connected* graph
Roots

Some nodes might be considered *roots* — often nodes that reach all others

Multiple candidate roots:
Representing Graphs

Graphs can be represented in different ways:

• Nodes as structs/objects, edges as pointers/references
• Nodes as objects, edges in a dictionary
• Nodes a integers, edges as a list of pairs of numbers

Unless you’re solving abstract graph problems, typically you have an existing data definition that you might think of as a graph — probably matching the first case
Designing Programs: Lists

(define (F n)
 (cond
 [(empty? n) ...]
 [else ... (F (rest n)) ...]))

for (n = root;
 n != NULL;
 n = n->next) {

}

Designing Programs: Trees

```scheme
(define (F n)
  (cond
    [(empty? n) ...]
    [else ... (F (child1 n))
      ... (F (childN n)) ...]))
```

- Depth-first vs. breadth-first
- Might express recursion through a stack or queue
Designing Programs: DAGs

- Sometimes, treat a DAG as a tree
Designing Programs: DAGs

- Sometimes, treat a DAG as a graph...
Like a tree, but accumulate seen

```
(define (F n)
  (cond
    [(seen? n) ...]
    [else (seen! n)
      (cond
        [(empty? n) ...]
        [else ... (F (child1 n))
          ... (F (childN n)) ...]])])
```
Designing Programs: Graphs

Depth-first:
Designing Programs: Graphs

Breadth-first:

or
Classical Graph Algorithm

Find the shortest path to a node:

```
A
  /\  /
 /   /  \
B   C   D
```

Solution: breadth-first search

```
A
  /\  /
 /   /  \
B   B   D
```
Classical Graph Algorithm

Find the shortest weighted path to a node:

Neither breadth-first nor depth-first works
Classical Graph Algorithm

Find the shortest weighted path to a node:

Solution: use a **priority queue**
- Enqueue node with distance so far
- Dequeue node that has shortest distance so far

A priority queue gives us “closest-first”
- Instead of a queue (breadth-first)
- Instead of a stack (depth-first)
Shortest Weighted Path
Shortest Weighted Path
Shortest Weighted Path

![Graph diagram showing weighted paths between nodes A, B, C, and D with edge weights labeled as 1, 9, 4, 3, 9, and 1.]
Shortest Weighted Path

1

A

B

C

D

C 5

C 9

D 10
Shortest Weighted Path

5

\[A \]
\[B \]
\[C \]
\[D \]

\[1 \]
\[9 \]
\[9 \]
\[4 \]
\[3 \]
\[1 \]

C 9
D 10
Shortest Weighted Path

5

D 6
C 9
D 10
Shortest Weighted Path

6

A

B

C

D

C 9

D 10

1 9

4 3

9 1

9
Tracking Seen Nodes

Two common ways to track “already seen” nodes:

• Reserve space in the node for a mutable boolean
 + Easy to implement (in C)
 - Easy to pollute state

• Use a container
 - More work to implement (in C)
 + Avoids extra state