Multiple Programs

How do programs communicate!

-

-




Multiple Programs

How do programs communicate? Files...

-

)

-

<

.




Multiple Programs

How do programs communicate! Files... Network...

L




Multiple Programs

How do programs communicate!? Files... Network... Stdin...

L




Multiple Programs

How do programs communicate!? Files... Network... Stdin... Etc.

L

But what’s in a file or sent over the network?



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
*

(read-byte in)



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
L

(read-byte in) - 104



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
L

(read-byte in) - 104
(read-byte in) - 101



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
®

(read-byte in) - 104 (read-byte in) - 108
(read-byte in) - 101 (read-byte in) - 111
(read-byte in) - 108 (read-byte in) - eof



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
*

fgetc (in)

10



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
L

fgetc(in) - 104

11



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
L

fgetc(in) - 104
fgetc(in) - 101

12



Byte Streams

Operating systems provide files, network connections,
etc. as byte stream objects
A byte is a number between 0 and 255

A stream is a sequence with a counter and an
operation: read-byte or write-byte

g

104 101 108 108 111
®

fgetc(in) - 104 fgetc(in) - 108
fgetc(in) - 101 fgetc(in) - 111
fgetc(in) - 108 fgetc(in) - -1

13



Byte Streams

)




(write-byte 104 o)

— (void)

Byte Streams

-

-

104

15



(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

101

104

16



(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

101

(read-byte i)
— 104

17



(write-byte 104 o)

— (void)

(write-byte 101 o)

— (void)

Byte Streams

-

-

(read-byte i)
— 104

(read-byte i)
— 101

18



Encoding

To communicate information other than small numbers,
it must be encoded

To encode English text, map each character to a byte

#\a = 97
#\b = 98
#\e¢ = 99
A o 65
#\( = 40
#\) = 41

#\1 = 48



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#;h #\e #\1 #\1 #\o

(read-char in)

20



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #;e #\1 #\1 #\o

(read-char in) — #\h

21



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #\e #;l #\1 #\o

(read-char in) — #\h

(read-char in) - #\e



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #\e #\1 #\1 #;o

(read-char in) — #\h

(read-char in) - #\e

(read-char in) - eof

23



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#;h #\e #\1 #\1 #\o

fgetc (in)



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—

#\h #}e #\1 #\1 #\o

fgetc(in) - 'h' /* = 104 */

25



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—
#\h #\e #\1 #\1 #\o
)
fgetc(in) - 'h' /* = 104 */
fgetc(in) - 'e' /* = 101 */

26



Character Streams

This character encoding is so popular that byte streams
are sometimes viewed as character streams

—
#\h #\e #\1 #\1 #\o
O
fgetc(in) - 'h' /* = 104 */
fgetc(in) - 'e' /* = 101 */

fgetc(in) - -1

27



Accessing Streams

Stream types:

* Racket:
© input port
© output port
* Java:

© InputStream
© PrintStream

. C:
O FILE*

28



Accessing Streams

Getting standard input, output, and error-output:

* Racket:
O (current-input-port)
© (current-output-port)
© (current-error-port)

* Java:
© System.out
© System.in
© System.err

« C with #include <stdio.h>:
© stdin
© stdout
© stderr

29



Accessing Streams

Reading or writing a file:

* Racket:
O (open-input-file filename)
© (open-output-file filename)

* Java:
© new BufferedReader (new FileReader (filename) )
0 new BufferedWriter (new FileWriter (filename))

« C with #include <stdio.h>:
© fopen (filename, "rb'")
© fopen (filename, "wb")

30



Character Streams in Racket

(define o (open-output-file "exl"))
(write-char #\h o)

(write-char #\e o)
(close-output-port o)

(define i (open-input-file "exl1l"))
(check-expect (read-char i) #\h)

(check-expect (read-char i) #\e)

(close-input-port 1)

Note: Racket term for stream is port

31



Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

I

97 206 187 98
L




Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

I

97 206 187 98
*

(read-char in) - #\a

33



Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

I

97 206 187 98
*

(read-char in) - #\a

(read-char in) — #\A

34



Encoding: Characters in Racket

In Racket, characters are actually encoded in multiple
bytes, sometimes

I

97 206 187 98
®

(read-char in) - #\a
(read-char in) — #\A

(read-char in) — #\b

35



Encoding: Characters in C

In C, char just means “byte”

I

97 206 187 98
L

36



Encoding: Characters in C

In C, char just means “byte”

I

97 206 187 98
*

fgetc(in) - 'a’

37



Encoding: Characters in C

In C, char just means “byte”

*

I

97 206 187 98

fgetc(in) - 'a’

fgetc(in) - 'I"

38



Encoding: Characters in C

In C, char just means “byte”

97 206 187

»gy

()

fgetc (in) -

(o M

fgetc (in) -

v

fgetc (in) -

39



Encoding: Characters in C

In C, char just means “byte”

T~
97 206 187 98
@

()

fgetc (in) -
fgetc(in) - 'I"
fgetc(in) - "»'

fgetc(in) - 'b'



Some Character Encoding Standards

ASCII
© “Characters” 0 to 127
© A kind of English plus computer creole

Latin- |
O “Characters” 0 to 255

O A kind of Western Europe plus computer creole
O A superset of ASCII

UTF-8
O “Characters” 0 to 917999 or so

© Roughly covers all languages on Earth
© A superset of ASCII

UTF-16

O Same coverage as UTF-8
© Uses 2 or 4 bytes for each character

41



Communicating Strings

One string: encode as a sequence of characters

Multiple strings: need a way to mark the end of one string

The most popular encoding is line-based:
* Use a newline (encoded as |10) to separate strings
© #\newline or '\n'
* Works for strings that don’t contain newlines
* Racket:
© (read-line input-port)

- C:
© fgets (buffer, len, stream)

42-43



CRLF versus LF

Sometimes, lines are separated by two characters
(CRLF: 13 then 10) instead of one (LF: 10):

"one\ntwo\n" versus "one\r\ntwo\r\n"

The encoding convention depends on the platform

Opening a file in “text mode” reads CRLF or LF as newline, as
appropriate for a given platform

* Racket:
© (open-input-file #:mode 'text filename)
© (open-output-file #:mode 'text filename)

- C:
© fopen (filename, "r")
© fopen (filename, "w'")

44



Communicating More Than Characters

To read and write aquariums, we need to communicate
lists of (large) numbers

Again, we must encode:

empty = #\.
'(10000) = #\1 #\O0 #\0 #\O #\space #\.
'(1 2) #\1 #\space #\2 #\space #\.

]

45-46



Number List Serialization

A <numlist> is either
#\.

<num> #\space <numlist>

A <num> is either
<digit>
<num> <digit>

A <digit> is either
#\0
#\1

#\9

47



Number List Writer

; write-numlist : list-of-num output-port -> void

(define (write-numlist 1 p)
(cond
[ (empty? 1) (write-char #\. p)]
[else (begin
(write-num (first 1) p)
(write-char #\space p)
(write-numlist (rest 1) p))1))

; write-num : num output-port -> void
(define (write-num n p)
(cond
[( n 10) (write-digit n p)]
[else (begin
(write-num (quotient n 10) p)
(write-digit (remainder n 10) p))1]1))

; write-digit : num [0-9] output-port -> wvoid
(define (write-digit n p)

(cond

[(= n 0) (write-char #\0 p)]

[(; n 9) (write-char #\9 p)1))

48



Number List Parsing

Parse using an equivalent but more convenient form:

A <numlist> is either = A <numlist> is either
#\. #\.
<num> #\space <numlist> #\0 <num> <numlist>

A <num> is either
#\9 <num> <numlist>

<digit>
<num> <digit> A <num> is either
#\space
A <digit> is either P
#\0 <num>
#\0
#\1 #\9 <num>

#\9

49



Number List Reader

; read-numlist : input-port -> list-of-num
(define (read-numlist p)
(local [(define ¢ (read-char p))]
(cond
[ (char=? #\. c) empty]
[ (char-digit? c) (cons (read-number p (digit-val c))
(read-numlist p))]1)))

; read-number : input-port num -> num
(define (read-number p n)
(local [ (define ¢ (read-char p))]
(cond
[ (char=? #\space c) n]
[ (char-digit? c)
(read-number p (+ (* n 10) (digit-val c)))1)))

; char-digit? : char -> bool

; digit-val : char -> num

50



|/O Libraries

You don’t always have to start from scratch

* Racket:
© read and write
© read-line and displayln
© read-xml and write-xml
O ...

- C:
© fscanf and fprintf

O (XN

51



Dear Sir:

\ 4
) D

Buffers

- I

iL

52



Buffers

A buffer is why you see no output from

int main() {
printf ("hello") ;
crash () ;

Line-buffering is why you do see output from

int main() {
printf ("hello\n") ;
crash () ;

}

... unless you redirect to an output file

53-54



Buffers

Flushing buffers:

* Racket:
© (flush-output output-port)

- C:
O f£fflush (stream)

55



