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Abstract  Fluent version 6.2 computational fluid dynamics environment has been enhanced with a population bal-
ance capability that operates in conjunction with its multiphase calculations to predict the particle size distribution within 
the flow field. The population balance is solved by the quadrature method of moments (QMOM). Fluent’s prediction ca-
pabilities are tested by using a 2-dimensional analogy of a constantly stirred tank reactor with a fluid flow compartment 
that mixes the fluid quickly and efficiently using wall movement and has a feed stream and a product stream. The results 
of these Fluent simulations using QMOM population balance solver are compared to steady state analytical solutions for 
the population balance in a stirred tank where 1) growth, 2) aggregation, and 3) breakage, take place separately and 4) 
combined nucleation and growth and 5) combined nucleation, growth and aggregation take place. The results of these 
comparisons show that the moments of the population balance are accurately predicted for nucleation, growth, aggrega-
tion and breakage when the flow field is turbulent. With laminar flow the mixing is not ideal and as a result the steady 
state well mixed solutions are not accurately simulated. 
Keywords  population balance, particle size distribution, computational fluid dynamics, crystallization, modeling

1. Introduction 
The population balance equation (PBE) is a statement of 

continuity for particulate systems. Cases in which a popu-
lation balance could apply include crystallization, precipita-
tion, bubble columns, gas sparging, sprays, fluidized bed 
polymerization, granulation, wet milling, liquid-liquid dis-
persions, air classifiers, hydrocyclones, particle classifiers, 
and aerosol flows. In the case of a continuous mixed- 
suspension, mixed-product removal (CMSMPR) crystal-
lizer operating at steady state in which aggregation, 
breakage and growth are occurring the PBE is given by 
Randolph and Larson (1988) as 

in( ) ( ) d( ( ) ( )) ( ) ( )
d

n v n v G v n v b v d v
vτ

−
+ = −

0
β∫

w

,         (1) 

with the boundary condition, n(0)=n0(x). In the above 
equation n(v) is the number-based population of particles 
in the tank which is a function of the particle volume, v. The 
subscript “in” refers to the inlet population. G(v) is the 
volume dependent growth rate and b(v) is the volume de-
pendent birth rate and d(v) is the volume dependent death 
rate. In the case of aggregation, the birth and death rate 
terms are given by Hulburt and Katz (1964): 
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where the aggregation rate constant, β(v,w), is a measure 
of the frequency of collision of particles of size v with those 
of size w. In the case of breakage, the birth and death rate 
terms are given by Prasher (1987): 
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where S(v) is the breakage rate constant that is a function 
of particle size, v, ρ(v,w) is the daughter distribution func-
tion defined as the probability that a fragment of a particle 
of size w will appear at size v. 

It is often useful to know the moments of n(v) because of 
their physical significance. The kth volume moment is de-
fined by 
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where vm0 and vm1 represent the total number and total 
volume of particles in the system. 

Computational fluid dynamics deals with equations that 
represent a balance process for mass, momentum, energy 
and chemical species.  These equations are all charac-
terized by the following generalized partial differential 
equation: 
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  Transient       Convective  Diffusive   Source 
For the momentum balance, φ is given by individual com-
ponents of the velocity vector, Γ is given by the viscosity 
and there are no source terms. For the energy balance, φ 
is given by temperature; Γ is given by the thermal conduc-
tivity and the source term given by the heat of reaction or 
other heat sources. For the mass balance, φ is given by 
mass fraction; Γ is given by the molecular diffusion coeffi-
cient and the source term given by the rate of chemical 
reaction. 

The population balance equation can also be described 
in this same form as Eq. (5), when it is written in the mo-
ment form of the population balance. In this case, φ is 
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given by several moments of the population of particles, Γ 
is given by the Brownian diffusivity and the source terms 
are due to breakage and agglomeration. To well charac-
terize a given particle size distribution several moments are 
used, typically 3 to 6. In order to solve those partial differ-
ential equations for the momentum, mass, energy and 
population balance, finite element or finite difference 
methods are used. Fluent uses a special type of finite dif-
ference algorithm called the finite volume method. With the 
quadrature method of moments (QMOM), the population 
balance is written as a series of moment equations by 
multiplying Eq. (1) by vk and integrating with respect to v 
from zero to infinity. These moment equations are used in 
place of the PBE to approximate the particle size distribu-
tion (see Randolph & Larson (1988)). QMOM was first 
proposed by McGraw (1997) and further developed by 
Marchisio et al. (2003). With the QMOM PBE solver in 
Fluent 6.2, a small number of moments, N, (typically 6) are 
used. Moments are approximated by a quadrature ap-
proximation that uses N/2 weights, Wi, and N/2 sizes, Li, as 
follows: 
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Upon substitution of these weights and sizes into the N 
moment equations, we have a series of equations that just 
equals the number of unknowns, N, allowing for the solu-
tion of the system of equations that constitutes an 
approximation of the PBE. From the moments the particle 
size distribution can be reconstituted using a moment 
transformation (1). For more details of this numerical 
method see the Fluent User’s Guide  Crystallization 
Sample Case and Data Files. 

The moments used in Fluent’s version of QMOM are 
length based and are different from those described by 
Eq. (4) which are volume based. There is a correspon-
dence between length based moments and volume based 
moments, as given in Table 1, where Ka means surface 
area shape factor, and Kv means volume shape factor. 
Noting this correspondence, any length-based moment 
calculated by Fluent can be compared with the volume 
based moment predicted from an analytical solution to the 
population balance and Eq. (4). 

Table 1  Correspondence between length based and volume based 
moments 

Property Volume based 
moment 

Length based 
moment 

Number of particles vm0 Lm0 
Surface area of particles  vm2/3 Ka*Lm2 
Volume of particles vm1 Kv*Lm3 

In this paper a 2-D analogue is used to simulate a stirred 
tank (CMSMPR) within Fluent. These simulations are 
compared to steady-state analytical solutions to the PBE 
for 1) growth, 2) aggregation, 3) breakage, taking place 

separately and 4) combined nucleation and growth and 5) 
combined nucleation, growth and aggregation taking place. 
The analytical solutions for n(v) are converted to the length 
based moments 0 to 5 and compared directly to the length 
based moments predicted by Fluent. 

2. Setup of 2-D Stirred Tank in Fluent 
To approximate a well-mixed stirred tank with a simpli-

fied computational geometry we have used a 2-D ap-
proximation of a stirred tank. This allows testing of the PBE 
within Fluent simply without solving a complicated 3-D flow 
problem with rotating grids typical of a stirred tank. The 2-D 
grid developed is given in Fig. 1. 

 
Fig. 1  Grid for 2-D simulation of well mixed stirred tank. 

It is a square box 0.1 m on edge with 400 elements with 
an inlet and an outlet both with a 0.02 m opening. The inlet 
boundary condition is set to inlet velocity of 0.005 m⋅s−1. 
The outlet condition is set to outlet pressure of 0 pascal 
gauge. For a constant stirred tank, the inlet flow rate is 
equal to the outlet allowing the mean residence time to be 
calculated from the inlet flow rate (velocity times inlet area) 
and the “volume” (box area times unit depth) of the box. To 
simulate the agitation in the tank the top and bottom walls 
are assumed to have an x-velocity of +101 and +100 m⋅s−1 
both in the direction of the outlet for the turbulent case and 
−8 and +8 m⋅s−1 each in the opposite direction in the lami-
nar case. In the turbulent flow case, k-ε model is used in 
addition to the momentum balance for the Reynold’s av-
eraged flow field. In the laminar flow case, only the mo-
mentum balance is used. The velocity vector field for the 
laminar case is shown in Fig. 2 and that for the turbulent 
case is shown in Fig. 3. The convective flux of the tracer at 
outlet is collected from this simulation and plotted against 
time (Choi et al., 2004), then converted to residence time 
distribution (RTD) using: 
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The RTD determined in this way is normalized since the 
feed tracer concentration was 1.0. 
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Fig. 2  Velocity distributions for laminar flow Fluent simulation. 

 
Fig. 3  Velocity distributions for turbulent flow Fluent simulation. 

To test the accuracy of the well mixed assumption, the 
residence time distribution was predicted using a unit 
tracer concentration, a second phase with the properties of 
water, in the tank that is allowed to displace a first water 
phase as time progresses. The tracer is added at the inlet 
and the concentration of the tracer is monitored at the 
outlet. The outlet concentration predicted by the simulation 
is shown in Fig. 4 for the laminar flow and the turbulent flow 
simulations as well as the ideal curve. Here we see that the 
laminar flow curve has an initial peak above the ideal curve 
and a tail that is below the ideal curve, while the turbulent 
simulation is nearly identical to the ideal curve. 

The mean and standard deviation of the various resi-
dence time distributions were determined giving the fol-
lowing comparison in Table 2. 

Table 2  Comparison of the mean and standard deviation of the resi-
dence time distributions 

 tmean 
(V/Q) Error/% Std.Deviation/tmean Error%

Turbulence model 1.001 0.1 1.008 0.8 
Laminar model 0.999 0.1 1.058 5.8 
Perfect mixing 1 0 1 0 

Ideal values for both the mean time, tmean, divided by the 
ratio of tank volume, V, to volumetric flow rate, Q and the 
standard deviation divided by the mean time should be 1.0.  
The laminar flow model is clearly worse than the turbulent 
flow model in approximating an idealized well-mixed tank. 
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Fig. 4  Comparison of residence time distributions for laminar (□) and 
turbulent (•) flow simulations with ideal well-mixed tank (-) with 
the Equation, E(t)=exp(−t/τ), τ =V/Q. 

Time/s 

3. Numerical Case Studies 
Numerical cases have been developed to test the PBE 

capabilities of Fluent. First of all, Fluent is used to solve the 
velocity field to a convergence of 10−5 for either the laminar 
or turbulent flow. Then a particulate multiphase calculation 
is initiated with the PBE solved by QMOM using 6 length- 
based moments 0 to 5 (or more precisely 3 lengths and 3 
weights) with the velocity field fixed. The convergence 
criterion is lowered to 10−7 (or lower) for the multiphase 
PBE calculation with a relaxation parameter of 0.9 except 
when otherwise stated. 
Case 1  Growth:  The analytical solution to the PBE, 
equation (1), for growth alone was obtained by setting the 
growth rate to a constant (G(v)=G0), the aggregation kernel, 
β(v,w), and the specific rate of breakage, S(v), to zero.  
For this case the feed particle size distribution is 

0
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and the boundary condition is set to zero, 
(0) 0n = .                             (9) 

Although not physically realistic, a constant growth rate 
results in a PBE solution, that is, 
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where τ is the mean residence time. Simulations are per-
formed with N0 and v0 set equal to unity. Please note that 
this solution is singular when 0 0v Gτ= . 
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Analytical expressions (Nicmanis & Hounslow, 1998) for 
the zeroth, first and second volume based moments are 
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These and other moment equations are used for com-
parison with Fluent simulations. Because in the analytical 
solution, the growth term is expressed in terms of the par-
ticle volume, v, and in Fluent it needs to be expressed in 
terms of particle length, x, we need to perform moment 
transformations discussed above and presented in Table 1. 
In addition the growth rate, G(v) used in Eq. (1) and G0 

used in Eq. (10), is a volume based growth rate that should 
be converted to a length based growth rate for utilization 
within Fluent. This transformation is given by 

2
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where Kv is the volume shape factor, a proportionality con-
stant that converts the cube of the size coordinate, x, to the 
particle volume. 

For the Fluent simulation the growth rate of 1 µm⋅s−1 and 
the mean residence time of 100 s were used with the initial 
particle size distribution in the tank given by the feed dis-
tribution, Eq. (8), the simulation took 1600 iterations to 
achieve a residue of 10−9 for the turbulent flow simulation 
with a relaxation factor of 1.0 and 4000 iterations to 
achieve a residue of 10−9 for the laminar flow simulation. 
The results of these simulations are given in Table 3 for 
both the laminar and turbulent flow simulations with a re-
laxation factor of 0.9.  

Table 3  Moment comparison of PBE for Fluent simulations with ana-
lytical solution for growth alone 

Outlet 
Fluent   

Inlet Analytical 
Turbulence Error/% Laminar Error/%

Lm0 1 1 1 0 1 0 
Lm1 1.108 5.183 5.190 6333 0.147 5.091 3844 1.768
Lm2 1.39 30.227 30.251 846 0.082 29.813 738 1.367
Lm3 1.91 192.896 193.028 59 0.069 192.868 99 0.014
Lm4 2.821 1 323.3 1 325.7223 0.206 1 347.62 1.861
Lm5 4.423 9 626.3 9 641.8662 0.165 9 985.3242 3.733

The turbulent flow case will not converge with a relaxa-
tion factor of 1.0. The results of the turbulent flow simula-
tion are accurate to only 0.2% with this convergence crite-
rion. The results of the laminar flow simulation is less ac-
curate  a 3.7% error with the same convergence criterion.  
Because the laminar flow simulation does not correspond 
to well-mixed conditions, and therefore does not accurately 
simulate the analytical solution. This is shown in Fig. 5 and 
Fig. 6, in which a contour plot of Lm1 for turbulent condi-
tions and laminar conditions are shown respectively. We 
can see that with turbulent conditions Lm1 is nearly con-
stant everywhere inside tank except near the inlet where 

Lm1 is near zero, while for laminar flow conditions, Lm1 is 
not evenly distributed. In the center of the tank, the value of 
Lm1 is larger than that near the walls. In the center of the 
flow field, the fluid stays longer than near the walls due to a 
dead zone (see Fig. 2) thus leading to a longer growth 
period to give larger particles and therefore larger values of 
Lm1. 
 

 
Fig. 5  Contour plot of Lm1 for 2-d tank operated with turbulent flow 

conditions. 

 
Fig. 6  Contour plot of Lm1 for 2-d tank operated with laminar flow 

conditions. 

Case 2  Nucleation and growth:  The analytical solu-
tion to the PBE, Eq. (1), for nucleation and growth, was 
obtained by setting the growth rate to a constant (G(v)=G0), 
the aggregation kernel, β(v,w), and the specific rate of 
breakage, S(v), to zero. For this case the feed particle size 
distribution is set to zero, nin(v)=0 and the boundary condi-
tion is 

0(0)n n= ,                      (13) 
where n0 is the number density of particles with a zero size. 
The nucleation rate is given by the product of G0 and n0. 
The analytical solution for this case is given by Randolph 
and Larson (1988): 

0
0
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This analytical solution is converted to length-based 
moments for comparison with the Fluent simulation. The 
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Fluent simulation was run with GL-0=0.01 mm⋅s−1, noting 
the above conversion in Eq. (12) and the nucleation rate of 
1 m−3⋅s−1, and the mean residence time τ of 100 s with no 
particles in the feed. The results of this comparison are 
given in Table 4. Here we see that the laminar flow simula-
tion is in error by as much as ~25% while the turbulent flow 
simulation is accurate to ~0.01%. 

Table 4  Moment comparison of PBE for Fluent simulations with ana-
lytical solution for nucleation and growth 

  

Outlet 
Fluent   

Inlet Analytical 
Turbulence Error/% Laminar Error/%

Lm0 0 100 99.987 0.013 99.98 0.02 
Lm1 0 100 99.988 0.012 105.68 5.68 
Lm2 0 200 199.977 0.012 223.2 11.6 
Lm3 0 600 599.933 0.012 702.3 17.5 
Lm4 0 2 400 2 399.732 0.011 2 917.2 21.55
Lm5 0 12 000 11 998.66 0.011 14 982 24.85

Case 3  Aggregation:  The analytical solution to the 
PBE, Eq. (1), for aggregation alone was obtained by set-
ting the growth rate to zero (G(v)=0), the aggregation ker-
nel to a constant, β(v,w)=β0, and the specific rate of break-
age, S(v), to zero. For this case the feed particle size 
distribution is set to an exponential distribution given by 
Eq. (8). 

The analytical solution for this case is given by Houn-
slow (1990): 

( )

( )
( )

( )
( )

( ) ( )
( )

0 0 0 0
0 1

0 0 0 0 0 00

0 0 0
0 0

0 0 0

1 2 1 2

1
1 2 exp

1 2

N v N v
I I

v N v NNn v
v N v

N
N v

β τ β τ
β τ β τ

β τ
β τ

β τ

  − −
+  

  + +      =
 +

+ 
 +  



  





, (15) 

where I0(z) and I1(z) are modified Bessel Functions of the 
first kind of zero and first orders. This analytical solution is 
converted to length-based moments for comparison with 
the Fluent simulation. Analytical expressions (Smit et al., 
1993) for the zeroth, first and second volume based mo-
ments are 
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The Fluent simulation was run for the conditions of 
β0=1 m4⋅s−1, N0=100 m−3, v0=100 µm, and a mean resi-
dence time of 100 s with the relaxation factor set to 0.9. 
The turbulent simulation ran for 1000 iterations to get to a 
residue of 10−9 while the laminar simulation ran for 3000 
iterations to get a residue of 10−10. The results of this 
comparison are given in Table 5. Here we see that the 
turbulent flow simulation is accurate to ~0.4% and the 3rd 
length based moment is correctly predicted to not change 
during passage through the reactor. 

Table 5  Moment comparison of PBE for Fluent simulations with ana-
lytical solution for aggregation alone 

Outlet 
Fluent   

Inlet Analytical
Turbulence Error/% Laminar Error/%

Lm0 1 0.132 0.131 9 0.076 0.159 3889 20.75
Lm1 1.108 0.225 0.225 6 0.267 0.254 9767 13.32
Lm2 1.39 0.547 0.549 0 0.366 0.576 4962 5.392
Lm3 1.91 1.91 1.91 0 1.91 0 
Lm4 2.821 9.073 9.093 0.22 8.967 8564 1.159
Lm5 4.423 53.797 53.88 0.154 53.049 77 1.389

Case 4  Breakage:  The analytical solution to the PBE, 
Eq. (1), for breakage alone was obtained by setting the 
growth rate to zero (G(v)=0), the aggregation kernel to zero, 
β(v,w)=0, the specific rate of breakage to S(v)=v s−1 and 
the daughter distribution function to ρ(v,w)=2/w. For this 
case the feed particle size distribution is set to an expo-
nential distribution given by Eq. (8). 

The analytical solution for the case is given by Nicmanis 
and Hounslow (1998): 
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This analytical solution is converted to length-based 
moments for comparison with the Fluent simulation. 

Analytical expressions of the zeroth and first volume 
moments can be derived to give 

0 1
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which indicate that the volume of particles is conserved. 
These moments are converted to length-based moments 
for direct comparison with the QMOM Fluent simulation. 

The Fluent simulation was run with constants N0 and v0 
set to unity and the mean residence time τ to 100 s. 
Comparison of the Fluent simulations to the analytical so-
lution for both the laminar and turbulent flow simulations is 
given in Table 6. 

Table 6  Moment comparison of Fluent simulations with analytical 
solution for breakage only 

Outlet 
Fluent   

Inlet Analytical
Turbulence Error/% Laminar Error/%

Lm0 1 101 96.074 96 4.876 95.993 599 4.957
Lm1 1.108 21.758 21.476 35 1.294 21.155 323 2.77 
Lm2 1.39 5.807 5.728 288 1.355 5.622 628 7 3.175
Lm3 1.91 1.91 1.910 0003 1.6E−5 1.91 0 
Lm4 2.821 0.789 0.797 085 1.025 0.845 39419 7.148
Lm5 4.423 0.422 0.420 623 0.326 0.502 84964 19.159

To get to a residue of 10−10 required 22000 iterations 
using a relaxation factor of 1.0 for turbulent flow and 9000 
iterations with a relaxation factor of 0.9 for the laminar flow 
simulation. The results for Lm3 are accurately predicted 
indicating that mass is conserved, and the errors for other 
moments are within 4.9%. This indicates that Fluent 
QMOM does accurately simulate breakage. 
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Case 5  Nucleation, growth and aggregation com-
bined:  The analytical solution to the PBE, Eq. (1), for 
nucleation, growth and aggregation together was obtained 
by setting the growth rate to a constant (G(v)=G0), the 
aggregation kernel to a constant, β(v,w)=β0, and the spe-
cific rate of breakage, S(v), to zero. For this case the feed 
particle size distribution is set to zero, nin(v)=0, and the 
boundary condition is 

  

n0(0)n = ,                      (19) 
where n0 is the number density of particles with zero size. 
The nucleation rate is given by the product of G0 and n0. 
The analytical solution for this case is given by Liao and 
Hulburt (1976): 
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where I1(z) is the modified Bessel Function of the first kind 
of first order. Analytical expressions of the zeroth, first and 
second volume moments can be derived to give 
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This analytical solution and the above moment equa-
tions are converted to length based moments for com-
parison with the Fluent simulation. The Fluent simulation 
was run with Gv-0=0.01 mm3⋅s−1, the aggregation kernel 
β0=0.1 m4⋅s−1 and the nucleation rate of 0.01 m−3⋅s−1, the 
mean residence time τ of 100 s and with no particles in the 
feed. The solution took 8000 iterations to reach a residue 
of 10−10 for the turbulent simulation and 7000 iterations to 
reach a residue of 10−9 for the laminar flow simulation. To 
get convergence with the laminar flow simulation the re-
laxation factor for the population balance was initially set 
for 0.5 and after 1000 iterations it was raised to 0.8. The 
results of this comparison are given in Table 7. For the 
turbulent simulation, the largest error is 1.4% in the length 
moment, Lm1 and for the laminar flow simulation, the larg-
est error is 7.539% for the Lm5 moment. 

Table 7  Moment comparison of FLUENT simulation with analytical 
solution to the PBE for nucleation, growth and aggregation 

Outlet 
Fluent   

Inlet Analytical 
Turbulence Error/% Laminar Error/%

Lm0 0 0.358 0.358 2 0.056 0.344 3651 3.809
Lm1 0 0.346 0.350 8 1.387 0.339 4129 1.904
Lm2 0 0.434 0.436 7 0.622 0.429 6504 1.002
Lm3 0 0.684 0.684 5 0.073 0.690 9166 1.011
Lm4 0 1.305 1.317 8 0.981 1.371 7375 5.114
Lm5 0 2.904 2.909 1 0.176 3.122 9196 7.539

4. Conclusions 
A 2-D model of a well-mixed stirred tank using a simple 

geometry with a small number of grids can be shown to be 
an accurate model of a well-mixed crystallizer if the flow is 
turbulent. Using this turbulent model of a well-mixed tank, a 
two-phase model with a PBE for the second, solid phase 
has been developed and solved with the QMOM option 
within Fluent 6.2. This model has been tested using nu-
merical cases where growth, aggregation, breakage and 
the combined cases of nucleation and growth and nuclea-
tion, growth and aggregation. These Fluent simulations are 
compared with analytical solutions to the PBE for a con-
stantly well-mixed tank for these cases. The QMOM option 
in Fluent accurately predicts each of these cases. To obtain 
less than 1% accuracy for these cases, different conver-
gence criteria are necessary. Depending upon the case, a 
convergence criterion between 10−7 to 10−14 is required. A 
laminar model with poorer mixing conditions is used for 
comparison purposes. The results of the laminar model are 
far away from the analytical solutions, indicating that mix-
ing conditions are very important for crystallizer perform-
ance; different mixing condition will results in different 
product particle size distributions. 
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