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Polymer Bonded Explosives
Polymer bonded explosives are particulate composites.  The two primary components 
of these composites are explosive particles and  a rubbery binder.   The volume of 
particles in the composite is typically around 90% of the total volume.

Table 1 Typical polymer bonded explosives.

PBX                         Particles                              Binder  
                     Material   Vol. Frac            Material              Vol. Frac

PBX 9010        RDX         0.87             KEL-F-3700            0.13
PBX 9501        HMX        0.92             Estane/BDNPA-F      0.08
PBX 9502        TATB       0.90             KEL-F-800              0.10 

PBX 9501 contains 92% by volume of HMX (high melting explosive) particles and 8% 
by volume of binder.  The HMX particles are monoclinic and linear elastic.  The binder 
is a 1:1 mixture of the rubber Estane 5703 and a plasticizer (BDNPA/F).  The 
mechanical behavior of the binder is strain rate and temperature dependent.  As a 
result, the response of PBX 9501 also depends on strain rate and temperature. 

Figure 2 Young's modulus of binder and PBX 9501.  Poisson's ratio is 0.49 for the binder and 0.35 for PBX 9501.

Figure 1 Microstructure of PBX 9501.

Table 2 Elastic properties of HMX.

Young's modulus  (GPa)             Poisson's ratio
Expt.          MD Simulation     Expt.    MD Simulation

15.3              17.7               0.32          0.21 

In the recursive cell method (RCM) the representative
volume element (RVE) is divided into a regular
grid of subcells.  Instead of the whole RVE,
small square blocks of subcells are homogenized
at a time.  The procedure is repeated recursively
until a single homogeneous material remains.  
This material is the effective material.

Modeling Particulate Composites

Figure 5 Model particulate composite microstructures.
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Figure 4 Schematic of recursive cell method (RCM).
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Figure 7 Three-dimensional models of particulate composites.

Pressed PBX 9501 based microstructures

PBX 9501 dry blend based microstructures

Figure 9 Models microstructures representing PBX 9501.
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Figure 10 Effective properties of model RVEs from FEM, GMC, RCM-GMC.

Conclusions
- Predicted effective properties are strongly microstructure dependent.
- Detailed numerical simulations are required for accurate estimates.
- Recursive cell method with the generalized method of cells homogenizer can predict
  effective moduli that are close to finite element estimates with considerably greater
  computational efficiency.
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Exact Relations
Third-Order Bounds
Differential Effective Medium (DEM) 
Finite Element (FEM) Approximations
Generalized Method of Cells (GMC)
Recursive Cell Method (RCM)

Exact relations and DEM are used to assess the 
accuracy of FEM and RCM  Bounds can be
observed to be widely separated.  Direct GMC
does not model stress bridging accurately.

Figure 3 Third-order bounds and PBX 9501.

Figure 6 Differential effective medium (DEM), Recursive Cell Method with FEM homogenizer (RCM-FEM), and  Recursive Cell Method with GMC homogenizer (RCM-GMC) vs. finite element estimates.
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Figure 8 Three-dimensional vs. two-dimensional finite element estimates.

-- Two-dimensional finite element estimates are close to differential effective medium predictions.
-- RCM-GMC estimates closer to finite element estimates than RCM-FEM predictions.
-- Difference between two- and three-dimensional finite element estimates is small.

Figure 11 Finite element prediction vs. experimental data
                on the Young's modulus of PBX 9501.


