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1 Governing Equations

The equations that govern the motion of a thermoelastic solid include the balance laws for mass, momentum, and
energy. Kinematic equations and constitutive relations are needed to complete the system of equations. Physical
restrictions on the form of the constitutive relations are imposed by an entropy inequality that expresses the second
law of thermodynamics in mathematical form.

The balance laws express the idea that the rate of change of a quantity (mass, momentum, energy) in a volume must
arise from three causes:

1. the physical quantity itself flows through the surface that bounds the volume,
2. there is a source of the physical quantity on the surface of the volume, or/and,

3. there is a source of the physical quantity inside the volume.

Let €2 be the body (an open subset of Euclidean space) and let OS2 be its surface (the boundary of (2).
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Let the motion of material points in the body be described by the map
x = p(X) = x(X) (1)

where X is the position of a point in the initial configuration and x is the location of the same point in the deformed
configuration. The deformation gradient (F') is given by
ox

F 2 =Vox. 2)

1.1 Balance Laws

Let f(x,t) be a physical quantity that is flowing through the body. Let g(x, t) be sources on the surface of the body
and let h(x, t) be sources inside the body. Let n(x, t) be the outward unit normal to the surface 9€2. Let v(x,t) be
the velocity of the physical particles that carry the physical quantity that is flowing. Also, let the speed at which the
bounding surface OS2 is moving be u,, (in the direction n).

Then, balance laws can be expressed in the general form ([1])

g(x,t) dA + / h(x,t)dV. (3)
Q

i [/ £(x,1) dV] = [ FGelun(xt) = vix,t) - nix )] dA+ /

oN

Note that the functions f(x,t), g(x,t), and h(x,t) can be scalar valued, vector valued, or tensor valued -
depending on the physical quantity that the balance equation deals with.

It can be shown that the balance laws of mass, momentum, and energy can be written as (see Appendix):

p+pV-v=0 Balance of Mass
pv—V.-c—pb=0 Balance of Linear Momentum
o=ocl Balance of Angular Momentum @
pé—0o:(Vv)+V.q—ps=0 Balance of Energy.

In the above equations p(x, t) is the mass density (current), p is the material time derivative of p, v(x,t) is the
particle velocity, v is the material time derivative of v, o (x, t) is the Cauchy stress tensor, b(x, t) is the body force
density, e(x, t) is the internal energy per unit mass, é is the material time derivative of e, q(x, t) is the heat flux
vector, and s(x, t) is an energy source per unit mass.

With respect to the reference configuration, the balance laws can be written as

p det(F) —po=0 Balance of Mass
pox—Vyq- pPT— pob=0 Balance of Linear Momentum
F.Pp=pP". FT Balance of Angular Momentum ©)
poe—PT :F+Vo-q—pys=0 Balance of Energy.

In the above, P is the first Piola-Kirchhoff stress tensor, and pg is the mass density in the reference configuration.
The first Piola-Kirchhoff stress tensor is related to the Cauchy stress tensor by

P=det(F)F'.o. (6)
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We can alternatively define the nominal stress tensor IN which is the transpose of the first Piola-Kirchhoff stress tensor such that

N :=PT =det(F) (F ! o) =det(F)o- F~T. )
Then the balance laws become
p det(F) —po =0 Balance of Mass
poXx—Vo-N—pob=0 Balance of Linear Momentum
8
F- N"=N.FT Balance of Angular Momentum ®
poé— N: F+ Vo-q—pos=0 Balance of Energy.

The gradient and divergence operators are defined such that

3
Vv:z%ei@)ej:vmei@ej; V‘v:zgvz—v“, V.-§= Z
t,j=1

Ox; .
ij=1 """ i=1 7t

851]
8%

=o€ . (9

where v is a vector field, BS is a second-order tensor field, and e; are the components of an orthonormal basis in
the current configuration. Also,

5 O, 5. O, 8S;
Vov = —+ EQE;=v;E;QE;; Vy-v= F=wii; Vo-8= Z o Ei = Sij; Ei (10)
i=1 0X; ij= 1
where v is a vector field, BS is a second-order tensor field, and E; are the components of an orthonormal basis in
the reference configuration.

The contraction operation is defined as

3
AB:ZAZJBU:AUBZ] (11)
2,7=1

1.2 The Clausius-Duhem Inequality

The Clausius-Duhem inequality can be used to express the second law of thermodynamics for elastic-plastic
materials. This inequality is a statement concerning the irreversibility of natural processes, especially when energy
dissipation is involved.

Just like in the balance laws in the previous section, we assume that there is a flux of a quantity, a source of the
quantity, and an internal density of the quantity per unit mass. The quantity of interest in this case is the entropy.
Thus, we assume that there is an entropy flux, an entropy source, and an internal entropy density per unit mass (1)
in the region of interest.

Let €2 be such a region and let 02 be its boundary. Then the second law of thermodynamics states that the rate of
increase of 7 in this region is greater than or equal to the sum of that supplied to {2 (as a flux or from internal
sources) and the change of the internal entropy density due to material flowing in and out of the region.

Let 02 move with a velocity u,, and let particles inside 2 have velocities v. Let n be the unit outward normal to
the surface 0S2. Let p be the density of matter in the region, g be the entropy flux at the surface, and r be the
entropy source per unit mass. Then (see [ 1, 2]), the entropy inequality may be written as

d
(/pndV) / pn(un—v‘n)dA+/ qu+/prdV. (12)
dt o0 ; o9 Q



The scalar entropy flux can be related to the vector flux at the surface by the relation § = —1)(x) - n. Under the
assumption of incrementally isothermal conditions (see [3] for a detailed discussion of the assumptions involved),
we have

where q is the heat flux vector, s is a energy source per unit mass, and 7' is the absolute temperature of a material
point at x at time ¢.

We then have the Clausius-Duhem inequality in integral form:

d</ dV>>/ ( ) dA / q‘ndA+/p3dV (13)
—\ [ pn > [ pn(up—v-n)dA— [ —— —dVv.
dt \Jo 09 " oo T oT
We can show that (see Appendix) the entropy inequality may be written in differential form as
. q pSs
>-V-|= —. 14
pnz <T> 7 (14)

In terms of the Cauchy stress and the internal energy, the Clausius-Duhem inequality may be written as (see
Appendix)

VT
p(—Ti)—c:Vv< -2 Y

5)

1.3 Constitutive Relations

A set of constitutive equations is required to close to system of balance laws. For large deformation plasticity, we
have to define appropriate kinematic quantities and stress measures so that constitutive relations between them may
have a physical meaning.

Let the fundamental kinematic quantity be the deformation gradient (F') which is given by

0
an—;:VOX; det F > 0.
A thermoelastic material is one in which the internal energy (e) is a function only of F' and the specific entropy (),
that is

e=¢e(F,n).

For a thermoelastic material, we can show that the entropy inequality can be written as (see Appendix)

oe ) oe _7 . q-VT
- _ — 0o - : <0.
p(an T) 7]+<p8F o F > Fi =<0 (16)

At this stage, we make the following constitutive assumptions:

1. Like the internal energy, we assume that o and 7" are also functions only of F" and 7, i.e.,
o=o(F,n); T=T(F,n).
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2. The heat flux q satisfies the thermal conductivity inequality and if q is independent of 7 and F, we have

q-VT <0 = —(k-VT)-VT <0 = K>0

i.e., the thermal conductivity k is positive semidefinite.

Therefore, the entropy inequality may be written as

Oe ) Oe _r .
_ _ [— : <0.
p<377 T)n—l—(paF o-F > F <0

Since 7 and F" are arbitrary, the entropy inequality will be satisfied if and only if

de de de T de o
——T=0=T=_— d — —0c-F'" =0 = o=p—-—=-F
on on an Por 7 TP oF
Therefore,
Oe Oe
T=_— d =p— FT.
on an TP R

a7

Given the above relations, the energy equation may expressed in terms of the specific entropy as (see Appendix)

pTn=-V-q+ps.

o Effect of a rigid body rotation of the internal energy:

(18)

If a thermoelastic body is subjected to a rigid body rotation @, then its internal energy should not change. After a rotation, the new deformation

gradient (F)is given by .
F=Q F.

Since the internal energy does not change, we must have .
e=¢(F,n) =&(F,n).

Now, from the polar decomposition theorem, F' = R - U where R is the orthogonal rotation tensor (i.e., R- RT = RT - R = 1)and U is the

symmetric right stretch tensor. Therefore,
Q- R-U,n) =&(F,n).
Now, we can choose any rotation Q. In particular, if we choose Q = RT we have

eRT R-Umn)=e(1-Un) =&U,n).

Therefore,
eU,n) =e(F,n) .

This means that the internal energy depends only on the stretch U and not on the orientation of the body.

1.3.1 Other strain and stress measures

The internal energy depends on F' only through the stretch U. A strain measure that reflects this fact and also

vanishes in the reference configuration is the Green strain

1 1
E:i(FT-F—I):§(U2—1).

Recall that the Cauchy stress is given by

(19)



We can show that the Cauchy stress can be expressed in terms of the Green strain as (see Appendix)

o
a:pF-a—;-FT.

Recall that the nominal stress tensor is defined as
N =detF (o -FT).

From the conservation of mass, we have pg = p det F'. Hence,

N=2o. pT.
p

The nominal stress is unsymmetric. We can define a symmetric stress measure with respect to the reference
configuration call the second Piola-Kirchhoff stress tensor (.S):

S=F'N=pP F7T=2p"1 6. FT
p

In terms of the derivatives of the internal energy, we have

L0 -1 8é T _T 8é
S=""pF1. F. . F FT =
P <p OF > " oE
and
Po 0e _r _r oe
N =— F.— . F F =pg F - —.
p <p OFE > Po OFE
That is,
oe oe
S—p[)aiE and N—pOFai-E

1.3.2 Stress Power

The stress power per unit volume is given by o : Vv. In terms of the stress measures in the reference
configuration, we have

2
oFE
Using the identity A : (B - C) = (A - CT) : B, we have

Yy = 9¢ pr\ . p-T|. = 2N p_P N
O'.Vv—[(pF 9E F> F ].F—p(F 8E).F—pON.F.

o:Vv= (pF- ~FT> (F-F71).

We can alternatively express the stress power in terms of S and E. Taking the material time derivative of 2 we
have .
E:§(FT-F+FT-F).
Therefore,
| . .
S:E:§[S:(FT-F)+S:(FT-F)].
6

(20)

2h

(22)

(23)



Using the identities A : (B-C) = (A-CT): B=(BT-A):Cand A: B= AT : BT and using the symmetry
of S, we have

S:E:%[(S-FT):FT+(F-S):F]:%[(F-ST):F+(F-S):F]:(F-S):F.

Now, S = F~!. N. Therefore, S : E=N:F. Hence, the stress power can be expressed as

’U:VV:N:F:S:E.‘ (24)

If we split the velocity gradient into symmetric and skew parts using
Vv=Il=d+w
where d is the rate of deformation tensor and w is the spin tensor, we have
o:Vv=0c:d+o:w=tr(c" -d)+tr(c? -w)=tr(o - d) + tr(o - w) .

Since o is symmetric and w is skew, we have tr(o - w) = 0. Therefore, o : Vv = tr(o - d). Hence, we may also
express the stress power as

tr(o-d) =tr(NT . F)=u(S - E) . (25)

1.3.3 Helmbholtz and Gibbs free energy

Recall that

oe
S = Po a—E .
Therefore,
oe 1
9E  po
Also recall that
oe
8777 =

Now, the internal energy e = é(E, 1) is a function only of the Green strain and the specific entropy. Let us assume,
that the above relations can be uniquely inverted locally at a material point so that we have

E=E(S,T) and n=4(S,T).

Then the specific internal energy, the specific entropy, and the stress can also be expressed as functions of S and 7T',
or FandT,i.e.,

e=¢e(E,n) =¢(S,T)=¢E,T); n=a(8,T)=nE,T); and S =S(E,T)

We can show that (see Appendix)

i(e—T )= -T +iS~E oo W_ g +iS-E (26)
dt CO a — T T
and
—(e-Tn——S:E)=-Tn——S:E or —=Tn+—S:E. 27)
dt Po Po dt Po
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We define the Helmholtz free energy as

Y=Y(B.T):=c-T1. (28)
We define the Gibbs free energy as

1
g=9(8,T):=—e+Tn+—S:E.

(29)
P0o
The functions ¢)(E, T') and §(S, T') are unique. Using these definitions it can be showed that (see Appendix)
G = S(BT)s G = i(B.T)5 g% = B(S.T)i 55 =i(S,T) G0)
and N R ~ -
g—g —po g—g and % = po g—g (31
1.3.4 Specific Heats

The specific heat at constant strain (or constant volume) is defined as

0¢(E,T)
= 2
Cypi= =5 (32)
The specific heat at constant stress (or constant pressure) is defined as
0¢(S,T)
Cpi= (33)
We can show that (see Appendix)
o 0%
Co=T —=-T — 34
! or o> G
and ~ ) )
on 1 oFE 0°g 0°g
Co=T —+—8:—=T S : . 35
r=Yor o iar ' are T 7 asor (33)
Also the equation for the balance of energy can be expressed in terms of the specific heats as (see Appendix)
pCoT=V - (k-VI)+ps+ L TBs: E
Po
1 (36)
p (Cp—SzaE) T:V-(R-VT)—Fps—ﬁTaE:S
Po Po
where ) _
oS oFE
Bs = T and ag :

= — . 37

oT (37)
The quantity 3g is called the coefficient of thermal stress and the quantity o is called the coefficient of thermal
expansion.



The difference between C), and C), can be expressed as

X ) i
C—Cp=——(s-795).2E

- 57 | o7 - (38)

However, it is more common to express the above relation in terms of the elastic modulus tensor as (see Appendix
for proof)

1 T
Cp,—Chy=—8:ap+—ap:C:ag 39)
£0 PO

where the fourth-order tensor of elastic moduli is defined as

L aS

C:—i,.,— —_—= .
oFE " 0R0E

(40)

For isotropic materials with a constant coefficient of thermal expansion that follow the St. Venant-Kirchhoff
material model, we can show that (see Appendix)

1
Cp—Cv:p—[atr(S)+9a2KT} .
0

2 Appendix

1. The integral

is a function of the parameter ¢. Show that the derivative of F' is given by
dF d [ [*® o0 of (z,t ab(t dal(t
w_d (/ sna) = 70D g gy, 20 praw, 220
a

a(t) w Ot
This relation is also known as the Leibniz rule.

The following proof is taken from [4].

We have,
dF . F(t+ At) — F(t)
lim —mM—=

= 1l
dt At—0 At

Now,

Fe+an—F@O _ 1 / Y a4 Ad) ax / " s d"]

At At | Ja(t+at) a(t)
1 1 pb+Ab b
= — / f(m,tJrAt)dxf/ f(z,t)dx}
At LYa+Aa a
1T a+Aa b+Ab b
== _/ f(a:,t—i—At)dx—i—/ f(x,t—f—At)dx—/ f(:v,t)dx}

r a+Aa b b+Ab b
zé__/(j f(:e,t—i—At)dx-i—/a f(:z:,t+At)c1x+/b+ f(:c,t+At)dx—/a f(wvt)dx]

b fat A = fayt) 1 A 1 potda
= d —_— t+ At)dx — — t+ At)dx.
/ N x+m/b ftrd= o [ pa anas

Since f(z,t) is essentially constant over the infinitesimal intervals a < z < a + Aa and b < z < b + Ab, we may write

Aa

At

F(t+At) — F(t) /b Fz,t+ At) — f(z,t)

Ab
At) =~ A
~ ~ dx+ f(bt+ A1) T fa,t + A1)
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Taking the limit as At — 0, we get

F(t+ At) — F(t t+ At) Ab A
o, | EO) | [ SO0 0] 1 [y a0 ) g |00 55
or,
dF@t) " of(x,t) ob(t) 8a(t)
T = [, o e svw, 0 P~ slaw, O

. Let Q(t) be a region in Euclidean space with boundary (). Let x(t) be the positions of points in the region and let v(x, t) be the velocity field in
the region. Let n(x, t) be the outward unit normal to the boundary. Let f(x, t) be a vector field in the region (it may also be a scalar field). Show that

4 / fdv :/ ﬁdVJr/ (v-n)f dA .
dt \Jow) Ja) o0t Joo(t)

This relation is also known as the Reynold’s Transport Theorem and is a generalization of the Leibniz rule.
This proof is taken from [5] (also see [6]).

Let 20 be reference configuration of the region €2(¢). Let the motion and the deformation gradient be given by
_‘P(X»t); F(Xat):VOLP'

Let J(X,t) = det[F'(x, t)]. Then, integrals in the current and the reference configurations are related by
/ f(x,t)dV = / (X, 1), 1] J(X,t) dV = / £(X,t) J(X,t) dV
() Qo Q0

The time derivative of an integral over a volume is defined as

1
4 / £(x,4)dV | = lim — / f(x,t—i—At)dV—/ £(x,6)aV | .
dt \ Ja) At—0 At \ Jo(t+Ae) Q(t)

Converting into integrals over the reference configuration, we get

= £(x,4)dV | = lim — FX,t+ At J(X,t+ A dV — [ F(X, ) J(X,£)dV ) .
" < o) (x,1) ) Amo 3t Ua, ( ) J( ) o (X, t) J(X, 1)

Since €2 is independent of time, we have

" (/ £x,) dV> - [hm FOX, 0+ A JX, 1+ A1) — (X, 1) J(X, 1)
Q) Qo

dv
dt At—0 At

— Qoa—[f(x ) J(X, )] dV

_ /QO (a[f(x,t)} JX, 1)+ 80X, 0 2

51X, t)}) av

Now, the time derivative of det F is given by (see [0], p. 77)

8J(X, )
ot

i(/ﬂ(t)f(x,t)dV) :/Qo(
-/

_ /Q(t) (F6e 1)+ £0x,0) V- v(x,1)) av

—(det F)=(det F)(V-v) =J(X,t) V-v(p(X,t),t) = J(X,t) V-v(x,t).

Therefore,

B(X, )] J(X, 1) + (X, 1) J(X, 1) V- v(x, t)) dv

gl Sl

X, 0]+ (X, 1) V- v(x, t)) J(X,t) dV

where f is the material time derivative of £. Now, the material derivative is given by

A (x, 1)
ot
10

f(x,t) = + [VE(x,1)] - v(x,t) .



Therefore,

d _ of (x,1) vix x vix
7 </Q(t)f(x,t)dv> _/Q(t)( 5 + [VE(x,t)] - v(x,t) + £(x,t) V- v( 7t)) dav

i / fdv :/ (§+Vf-v+fv~v) dv.
dt Q(t) Q(t) ot

V- vRw)=v(V-w)+Vv-w

d of
— fdv | = — + V- (f dv.
dt </Q(t) ) /Q(t) (f% ( ®v)>

Using the divergence theorem and the identity (a ® b) - n = (b - n)a we have

f f
4 / fdv :/ 8—(1\/-1-/ (f®v)~ndV:/ 8—dV-‘,—/ (v-n)fdv.
dt \ Ja) Q) ot 29(t) Q) ot 29(t)

. Show that the balance of mass can be expressed as:

or,

Using the identity

we then have

p+pV-v=0

where p(x, t) is the current mass density,  is the material time derivative of p, and v(x, t) is the velocity of physical particles in the body 2
bounded by the surface 0S2.
Recall that the general equation for the balance of a physical quantity f(x,t) is given by

Gl rmoa] = [ ool n - ven neolass [ gnaat [ neoev.

To derive the equation for the balance of mass, we assume that the physical quantity of interest is the mass density p(x, t). Since mass is neither
created or destroyed, the surface and interior sources are zero, i.e., g(x,t) = h(x,t) = 0. Therefore, we have

% {/Q p(x,1) dV} = /asz p(x, 1) [un(x,t) — v(x,t) - n(x,t)] dA .

Let us assume that the volume €2 is a control volume (i.e., it does not change with time). Then the surface OS2 has a zero velocity (u,, = 0) and we get

ap /
— dV = — v-n)dA.
/Qat mp( )

/V~vdV:/ v-ndA
Q o

dp
— dV = — V- dVv.
- /Q (ov)

Using the divergence theorem
we get
or,

L[%-ﬁ-v-(pv)} dv=0.

Since €2 is arbitrary, we must have

Op
— 4+ V- =0.
ot (pv)
Using the identity
V- (pv)=¢V-v+Vp- v
we have 8
1
— +pV-v4+Vp-v=0.
ot P v Py
Now, the material time derivative of p is defined as
Op
) = +Vp-v.
P ot Py

Therefore,

p+pV-v=0.

11



4. Show that the balance of linear momentum can be expressed as:
pv—V-.-oc—pb=0

where p(x, t) is the mass density, v(x, t) is the velocity, o (x, t) is the Cauchy stress, and p b is the body force density.

Recall the general equation for the balance of a physical quantity

G L] = [ foxolunten - ven nojoas [ oot [ nxoe.

In this case the physical quantity of interest is the momentum density, i.e., f(x,t) = p(x,t) v(x, t). The source of momentum flux at the surface is
the surface traction, i.e., g(x, t) = t. The source of momentum inside the body is the body force, i.e., h(x,t) = p(x,t) b(x, t). Therefore, we have

d
—[/pvdV]:/ pVun —v-n]dA + tdA+/pde.
dt |/ o0 29 Q

The surface tractions are related to the Cauchy stress by
t=0'n.

Therefore,

d
—[/pvdV}:/ pv[unfv-n]dAJr/ O'-ndAJr/pde.
dt |Ja o0 a0 Q

Let us assume that €2 is an arbitrary fixed control volume. Then,

0
/—(pv)def/ pv (v-n)dA+ a-ndA+/pde.
Q Ot a0 a0 Q
Now, from the definition of the tensor product we have (for all vectors a)
(u®v)-a=(a-v)u.

Therefore,

/g(pv)dV:f‘/ p(v®v)-ndA+/ o‘-ndA+/pde.
Q Ot o0 0 Q

/V~vdV:/ v-ndA
Q a0

[aevav==[vpwoviavs [ vows [ b

Using the divergence theorem

we have

or,

/Q {%(pvnv-[(pv)®v]_v.o_pb} 4V —0.

Since €2 is arbitrary, we have

d
5PV TV l(pv)®V] =V o -pb=0.

Using the identity
V- (u®v)=(V-v)u+ (Vu)- v

we get
7] 19
—pv+p—v+(V-v)(pv)+V(pv)4v7V~crfpb:0
ot ot

or,
{%—f—pv'v}v+p?9—:+V(pv)~v—V~a—pb:0

Using the identity
Vipv) =9 Vv+vR(Vy)

we get
P P
{af':+pv-v}V+p6f:+[va+v®(Vp)]-va-O'fprO

From the definition
(u®v)-a=(a-v)u
12



we have

V& (Vo) v=[v-(Vp)v.

Hence,
ov

[dp 6t-l—va-v—l—[v~(Vp)]v—V~a'—pb:0

§+pv~v]v+p

or,

0, 1o}
[a—erVp-erpV-v}v+p6—:+va-v7V-afpb:0.

The material time derivative of p is defined as
Op
)= —+Vp-v.
P ot P
Therefore,

9]
[[)—l—pV-v}v—i—pa—:+va-v—V~o'—pb=0.

From the balance of mass, we have
p+pV-v=0.

Therefore,
o
p—v—l-va-v—V-O'—pb:O.
ot
The material time derivative of v is defined as 9
v = @ + Vv-v.
ot

Hence,

pv—V.o—pb=0.

. Show that the balance of angular momentum can be expressed as:
o=o0

We assume that there are no surface couples on 952 or body couples in 2. Recall the general balance equation

%[ [ st dv} = /8 TG Dlun(x,1) = ¥l 0) - o O] dA + /a _atxtyant [ hexnav.

In this case, the physical quantity to be conserved the angular momentum density, i.e., f = x X (p v). The angular momentum source at the surface
is then g = x X t and the angular momentum source inside the body is h = x X (p b). The angular momentum and moments are calculated with
respect to a fixed origin. Hence we have

%{/QXX(PV)dV} :/BQ[XX(pv)][u"7V'n]dA+/(;QXXtdA+/s;x><(pb)dV.

Assuming that €2 is a control volume, we have
17}
xX |=(pv)| dV = — [x X (pv)][v-n]dA+ xXtdA+ [ x X (pb)dV.
Q ot 1o} N Q
Using the definition of a tensor product we can write

x X (pv)][v-n] =[x x(pv)|®@V] -n.

Also, t = o - n. Therefore we have

/Qxx [%(pv)] dV:—/BQ[[xx(pv)}®v]-ndA+/(mxx(a-n)dA-l—/Qxx(pb)dV.

Using the divergence theorem, we get

[ xx [%pv)] = [ Vxxvigvieve [ xxiemaat [ xx@epv.

To convert the surface integral in the above equation into a volume integral, it is convenient to use index notation. Thus,

[/ xX(a~n)dA} :/ eijk$]-aklnldA:/ AjynpdA = A -ndA
o0 i [519) o0 1219]



where [ ]; represents the i-th component of the vector. Using the divergence theorem

DA, 9
Lav = [ ——(esjr xj opr)dV.

A -ndA = V~AdV:/ =
Q Q Oz Q Oz

o0

Differentiating,

0oy 0oy
A~ndA:/ |:5ijk (53'1 Okl + €5k X4 7:| dV:/ |:5ijk Okj + €ijk Tj ——— dV:/ [eijk Okj + €ijk T [V-o’h} dv.
oQ Q Oz Q Oz Q

Expressed in direct tensor notation,
A-ndA:/ [[8 col] 4+ [x X (V-a)]i] dav
a0 Q

where £ is the third-order permutation tensor. Therefore,

x X (o-n)dA| == [[5:0’T]i+[XX(V~U)}i] av
o0

i Q

or,
/(Bﬂxx(a-n)dA::/Q[S:O'T+XX(V-0')] dv.

The balance of angular momentum can then be written as

/QXX {%(pv)} dV:—/QV~[[xX(pv)]®v]dV+/ﬂ [5:0'T+XX(V~0')] dv + QxX(pb)dV.

Since €2 is an arbitrary volume, we have

x X {ﬁ(pv)} =V ([xX(pv)]®vI+E: 6T +x X (V-0)+x X (pb)

ot
or,
x X [%(w)—vﬂ—pb — Y xx(pv)]®VI+E: ol
Using the identity,
V- (u®v) = (V-v)u+(Vu) v
we get

V- [xX(pv)]|®Vv]=(V-v)x X (pv)]+ (VXX (pV)]) V.
The second term on the right can be further simplified using index notation as follows.

[(Vix X (pv)])-v]; = (VI (x X V)]) - v]; = a%l(p €ijk Tj Vk) VL

8,0 81’j 6Uk
= €jk %xjvkvl-i-pa—xlvkvl—&-pxj a—zlvl

= (eijk T5 Vk) (%
=[x XVv)(Vp-v)+pvXV+XX(pVv-V)];
=[x Xv)(Vp-v)+x X (pVVv-V)];.

vy,
Uz) + p (eijk 651 Vi V1) + €55k T (P Pm1 Uz)

Therefore we can write
V- xX(pv))Qvl=>pV -v)(xX v)+(Vp-v)xXV)+x X (pVv- V).

The balance of angular momentum then takes the form

X X [g(pv)—Vwr—pb} =—(pV-V)(xX V)= (Vp-vV)(xXV)—xX(pVv-v)+E: 0T

ot
or,
o
xX[a(pv)+pVV~v—V~0'—pb}:—(pV~V)(x>< V)= (Vp-v)(x XV)+E:0T
or,
ov  Op T
x X pa+av+va~v—V-o‘—pb =—(pV-v)xX v)=(Vp-vV)(xXV)+&:0

14



The material time derivative of v is defined as

Therefore,

x><[p\'/—V~0'—pb]:—xX%v—&——(pv-v)(xx v) = (Vp-v)(xXVv)+E:07.

Also, from the conservation of linear momentum
pv—V.o—pb=0.
Hence,

9]
0=x><a—':v+(pV-v)(xX V) + (Vp-v)(xxv)-E:aT

= (%+pV~v+Vp~v) (xxv)—E:07.

The material time derivative of p is defined as
Op
)= —+Vp-v.
P e p
Hence,
(p+pV-v)(xxVv)—E:067 =0.

From the balance of mass
p+pV-v=0.

Therefore,
E:07 =0.

In index notation,
€ijk Okj = 0.

Expanding out, we get
o12 — 021 =0; 023 —032=0; o031 —013=0.

Hence,

. Show that the balance of energy can be expressed as:
pe—o:(Vv)+V-q—ps=0

where p(x, t) is the mass density, e(x, t) is the internal energy per unit mass, o (x, t) is the Cauchy stress, v(x, t) is the particle velocity, q is the
heat flux vector, and s is the rate at which energy is generated by sources inside the volume (per unit mass).

Recall the general balance equation

S L] = [ foxotunten - veun nojoas [ gt [ neoev.

In this case, the physical quantity to be conserved the total energy density which is the sum of the internal energy density and the kinetic energy
density, i.e., f = pe+ 1/2 p |v - v|. The energy source at the surface is a sum of the rate of work done by the applied tractions and the rate of heat
leaving the volume (per unit area), i.e, g = v - t — q - n where n is the outward unit normal to the surface. The energy source inside the body is the
sum of the rate of work done by the body forces and the rate of energy generated by internal sources, i.e., h = v - (pb) + p s.

Hence we have

%Uﬂp (”%V‘v) dv]:/mp (”év"’)(““*V'“”A*/m(“t*qm)dA+/ﬂp(v-b+s)dv.

Let §2 be a control volume that does not change with time. Then we get

/Q% {P (eJr%V-v)} dV=f/BQP (€+%V-v) (V-n)dAJF/@Q(V't*Q'n)dAJr/Qp(v-bJrs)dV.

Using the relation t = o - n, the identity v - (- n) = (o7 - v) - n, and invoking the symmetry of the stress tensor, we get

/Q% {p (e—i—%v.v)} dV:—/mp (e+%v~v> (V'n)dA-‘r/m(mv—q)~ndA+/Qp(v~b+s)dV.

15



‘We now apply the divergence theorem to the surface integrals to get

/ﬂ%{p (e-l—%v-v)} dV:—/vi[p (e+%v~v)v:| dA+/Qv.(a.v)dA_/Qv.qu+/Qp(v-b+s)dv

Since €2 is arbitrary, we have

O I T LR

Expanding out the left hand side, we have

— e+-v-v)|l==—(et=-v-v — 4+ = —(v-v
ot |° 2 ot 2 P\ot T2 o
1

For the first term on the right hand side, we use the identity V - (¢ v) = ¢ V - v + V¢ - v to get

1 1
V-{p (e+§v~v)vj|:p(e+ V-v+V {p (e+§v~v):|-v
1 1
:p(e+ e+§v V)Vp-v+pV(e+5v-v)-v
:p(e+
:p(e+
:p(e+

For the second term on the right we use the identity ¥V - (ST - v) = §: Vv 4 (V - S) - v and the symmetry of the Cauchy stress tensor to get

<
<

<
<

<
<

v+(

1 1
v+(e+§v v) vav+pVe-v+5pV(v-v)~v
v+<

1
€+§V v) Vo v+pVe - v+p(Vvl.v).v

<
<

2

NI~ NI~ NI~ N= N
<
<

N— N N N~

1
V- v+(e+7v )Vp~v+pV64v+p(Vv~v)-v

V-(o-v)=0:Vv+(V-0) v

After collecting terms and rearranging, we get

1
(%—I—pv v+ Vp- v) (e+§v~v)+(pg—t+va v—V.o-— pb)~v+p <%+Ve~v)+—o‘:Vv+V~q—ps:0.

Applying the balance of mass to the first term and the balance of linear momentum to the second term, and using the material time derivative of the
internal energy

':a-‘rVe v

we get the final form of the balance of energy:

’péfo':Vv+V-qus:0.‘

. Show that the Clausius-Duhem inequality in integral form:

d(/ dV>>/ ( ) dA / q'ndA+/”de
— pn > pn(un—v-n)dA— [ —— —dv.
dt \Jo 09 " o T T

can be written in differential form as
. q ps
on>-—-V-|=]+—.
pir= (T) T

Assume that €2 is an arbitrary fixed control volume. Then u,, = 0 and the derivative can be take inside the integral to give

1o} q-n /ps
— dv > — v-n)dA — —dA + —dV.
/Qat(’”’) > /mpn( ) /m T 0T

Using the divergence theorem, we get

Q%(pn)dVZ—/ﬁV~(pnv)dV—/V < )dv+/dv

16



Since €2 is arbitrary, we must have

Expanding out

Op on q ps
o D> ) vorpn(V-v)-V- =) +22
5t 1T P g 2~ Vien) v—pn(V-v) <T> +7
or,
op On q ps
> v — v — JETAT v AN Rl
6tn+p6t >-nVp-v—pVn-v—pn(V-v)—V <T>+ T
or,

P P
(—p+vp~v+pvv)n+p(—"+vn~v>z—v~ +

ot ot

7N
Nle

~—
5%

Now, the material time derivatives of p and 7 are given by

. Op . On
= Vp-v; = — Vn-v.
P Bt+ p-Vvi M 8t+ n-v
Therefore,
b+pV-v)ntpn>-v-[2) 422
- T T

From the conservation of mass p 4+ p V - v = 0. Hence,

. Show that the Clausius-Duhem inequality

can be expressed in terms of the internal energy as

- VT
p(éfTﬁ)fo':vafq .

Using the identity V - (¢ v) = ¢ V - v + v - Vi in the Clausius-Duhem inequality, we get

o> v (2) L8 > Ly v(l)es
-V-|= — or -—V-q—q- — —.
P = 7] T pi=—pv-d-9d )" T

Now, using index notation with respect to a Cartesian basis e,

1 0 oT 1
—=— T Ye=—(T"2%) —ej=——=VT.
v(T) L o= Lo= v

Hence,
ps

. 1 1
7o pnz2-m(Via-ps)t+5a- VT

1 1
7> —=V_ —q- VT
pn 2 T Q+T2q +
Recall the balance of energy
pée—o:Vv+V.-q—ps=0 = pe—oc:Vv=—(V-q—ps).

Therefore,
1 1 _ . q-VT
Zf(pefo':Vv)Jrﬁq-VT = pnT >pé—o:Vv+ .

pn

Rearranging,

- VT
p(é—Tﬁ)—a:VvS—qT .

17



9. For thermoelastic materials, the internal energy is a function only of the deformation gradient and the temperature, i.e., e = e(F', T"). Show that, for
thermoelastic materials, the Clausius-Duhem inequality

-VT
p(é—Tﬁ)—o‘:va—q
T
can be expressed as
Oe de q-VT
——T — —o-FT).F<—
# (55-7) i+ (ram o F") T
Since e = e(F, T), we have
Oe ‘+8e
e=—: —
oF an "
Therefore,
Oe . Oe q-VT Oe e . q-VT
—:F+—n—-Tn)—-—0c:Vv<— — =T | n — :F—0:Vv<— .
p(aF +ann 77) o:Vv< 7 or p(an )"eraF o:Vv<

Now, Vv =1 = F - F~1. Therefore, using the identity A : (B - C) = (A - CT) : B, we have
c:Vv=c:(F-F Y= -FT).F.

Hence,

Oe de . _ . q-VT
— —T) 7 — :F—(c-FT):F<-
p<an )77+p8F (o ) F < T

or,

Oe Oe _ . q- VT
A — _—o-FT).F<-— .
p(% )"*GaF 7 ) =TT

10. Show that, for thermoelastic materials, the balance of energy
pée—oc:Vv+V.q—ps=0.
can be expressed as
pTn=-V-q+ps.
Since e = e(F, T), we have
. Oe s Oe .
ée=—: — 7.
OF on !

Plug into energy equation to get

paa—:_‘:Fergf;ﬁfo':VerV-qus:O.
Recall,
g—Z:T and pj—;:a-F_T.
Hence,

(- F 1) :F4+pTn—06:Vv+V-q—ps=0.
Now, Vv =1 = F'- F~1, Therefore, using the identity A : (B - C) = (A- CT) : B, we have
c:Vv=0:(F-F = -FT). F.

Plugging into the energy equation, we have
oc:Vv+pTn—0c:Vv+V-.-q—ps=0

or,

pTn=-V.-q+ps.

18



11.

Show that, for thermoelastic materials, the Cauchy stress can be expressed in terms of the Green strain as

Recall that the Cauchy stress is given by

Oe T Oe

. FT —
oF, k1 =P o,

=

oc=p— Fig .

oF 7=

The Green strain E = E(F) = E(U) and e = e(F,n) = e(U, n). Hence, using the chain rule,

de _0e 9E e _ e 0B,
OF ~ QE  OF OFy,  OEy, OFy
Now,
1 1 1
E:§(FT'F71) == Elm:E(Flepm*(;lm):E(Fplem*(slm)'
Taking the derivative with respect to F', we get
E 1 /9FT F E 1 [ OF, F,
87:7(8 .F+FT-8—) — 8lm:7( plem-l-szapm
oF 2\ OF oF OF;k 2 \ 0F;k OF;
Therefore,
1 Oe oFT T OF T Oe OFy,;
=-p|=—=:—== F+F'.— )| F = ;== P F F
7737 [6E ( oF T T ap)} 7= 5 F [aElm (BFHc pm - Epl
Recall,
0A  0A;; 0AT 0A;;
— = Y= 5ik 5]'1 and e EARE ik (51]
0A  0Ay 0A 0Ag;
Therefore,
1 Oe 1 Ode
Tij =5 P [m (Opi S1k Fpm + Fpy O 5mk)] Fjr = 37 {m (01 Fim + Fy 6mk)}
or,
1 Ode Oe 1 9e\T Ode
ij = = — F; — Fy| F; = = - F.|— F.—
7ii = 5P {8Ekm T S ”} gk 7737 [ (8E) teE
or,
1 de\T  oe T
=~ pF. bl ZZ|.fFT.
T=37 {(w) + BE}

From the symmetry of the Cauchy stress, we have

c=(F-A)-F' ad o'=F - (F-AT=F-AT.FT and
Therefore,
Oe [ Oe T
OE ~ \0E
and we get
19}
o= pF- e FT .
OF
For thermoelastic materials, the specific internal energy is given by
e =¢&(E,n)

where E is the Green strain and 7 is the specific entropy. Show that

Lle—Tn) =

. 1 .
-T'n+—S:E and
dt T an

dt po

where pg is the initial density, 7" is the absolute temperature, .S is the 2nd Piola-Kirchhoff stress, and a dot over a quantity indicates the material time

derivative.

19

PO

)

OF pm
OF;y

Fy

[

d 1 . 1 .
—(e—-Tn——S:E)y=-Tn— —S:E

)5

oc=0l = A=AT.



Taking the material time derivative of the specific internal energy, we get

.o . . 0,

ée=— :E+ —
OE on "
Now, for thermoelastic materials,
oe oe
=% and S:po—e.
on OE
Therefore,
1 . 1 .
ée=—S:E+Tn. = e—Tn=—S:E.
P0o Po
Now,
d(T y=Tn+T7
dt n=4in -
Therefore,
d . 1 . d . 1 .
e——Tn)+Tn=—8:E = —(e—-Tn=-Tn+—S: E.
dt P0 dt P0
Also,
d 1
—|—S:E|=—S:E+—S:E
dt \ po Po PO
Hence,
. d . d 1 1 . d 1 . 1 .
e——Tn+Tn=—|—S:E|-—S:E = —|le-Tn—-—S:E|=-Tn——S:E.
dt dt \ po £0 dt PO £0

13. For thermoelastic materials, show that the following relations hold:

W _Lemr, - amr); 2 - LesT. %

= = (8,T)
oE  po oT aS  po orT

Il
=

where ¢ (E, T') is the Helmholtz free energy and ¢(.S, T') is the Gibbs free energy.
Also show that

22— _po L and = po oo

Recall that
Y(E,T)=e-Tn=28eEn) —Tn.

and
1
9(S, T)=—-e+Tn+—S: E.
PO
(Note that we can choose any functional dependence that we like, because the quantities e, 17, E are the actual quantities and not any particular
functional relations).

The derivatives are

o _oe 1o W
OE ~ OE  po ' or
and
1 1
99 108 p 1p. 9
0S8  po 0S PO orT
Hence,
o 1 . oY . dg 1 - dg N
—=—S(ET); —=—-ET);, —==—E(S,T); — =71(S,T
E po(’)’aT WET); 25 p0(7)76T7I(7)
From the above, we have R
v _ o oy 108
OTOE ~ OEOT OE — pooT

20



and

P9 _ P9 00 _ 10E
aTHS ~ H8SAT 88  podT
Hence,
88 o9 OFE o7
0 e 2 d =p0 —— -
or ~ Mo " o1 T™5s

14. For thermoelastic materials, show that the following relations hold:

0e(E,T) an R
oar Lar- T2
and B 5 5
3 T n 1 E 25 g
MZT@+75:87:TL‘?+S: 9°g .
oT oT  po oT oT? o0SoT
Recall, .
Y(ET)=y=e-Tn=¢ET)-THET)
and
1 1 -
(S, T)=g=—e+Tn+—S:E=—-&8,T)+T7H(S,T)+ —8S: E(S,T).
PO PO
Therefore,
0¢(E,T) 81/1 on
_— — ET T —
or ~or TTEDTT 5
and
0¢(S, T) 8g on 1 OF
—_— ST)+T —+ —S: .
orT T il )+ oT + o T
Also, recall that R N
. o on %
ET) = —— L _Z
"B =55 = o~ arz
33 on 073
T — ==
WS =5p = ar  ar?’
and 5 )
9g oE 049
S, T)=po =5 = — = .
BS,T) = 5o ar ~ ™ asor
Hence,
~ 2 7
0e(E,T) _7 @ __7 loat
oT oT oT?
and
~ 1 2~ 2~
Oe(S,T) T@n 75 OE T8g+S: Bg'
oT oT aT oT? o0SoT

15. For thermoelastic materials, show that the balance of energy equation
pT'n=-V-aq+ps

can be expressed as either
. 28 .
pCyT=V" (k- VT)+ps+—T— E
po OT

or

1 OE)\ . OE
P <CPS:) T=V-(k- VT)ersf—T—:S

PO or po OT
where 0e(E, T 0e(S, T
Cy = M and Cp — M .
oT oT
If the independent variables are E and 7', then
. an on
=H(E,T == =—:FE T.
n="9(E,T) =5 Ftar



On the other hand, if we consider S and T to be the independent variables

=7i(S,T = j=—:8+_~T.
n =17(S,T) =555+ 51
Since . -
o _ 108 0q G bi _10E o 1. 1.
OE ~ po 8T’ 8T T ' 0S po 0T’ or — T\ " po
we have, either
198 . Cu,.
H=——=— B+ —T
po OT T
or ~ ~
1 oFE . 1 1 oE \ .
N=——:8S4+—-(Cp——S:— | T.
po OT T 0 orT
The equation for balance of energy in terms of the specific entropy is
pTn=-V.-q+ps.
Using the two forms of 7, we get two forms of the energy equation:
a8 . .
- T —  E CyT=-V-
oo OT +pCy qt+ps
and B B
p . OF OE
T =:8+ CTf—S’ — T =-V.-q+
20 T P Lp oT qTrps.
From Fourier’s law of heat conduction
q=—k-VT.
Therefore,
08
LAY D E4+pCyT=V-(k-VT)+ps
po OT
and
OE . . p OF .
—T— S CpT——8S: —T=V-(,-VT .
pli +pCp ST ( )+ps
Rearranging,
. 98 .
pCyT=V- (k- VT)—I—ps—&-—T— E
po OT
or,
1 AE\ . oE .
Cp——S:— | T=V- vT f—T— S.
p( e BT) (k- VT)+ps P
16. For thermoelastic materials, show that the specific heats are related by the relation
1 28\ OE
Cp—Cy = S—-T — —
PO or ) or
Recall that 0e(B,T) o
c b 77
Cyi=—7>—==T
Y ar or
and 5
0¢e(S,T) on 1 oE
Cp = =T —+—8: —
v ar ar " pe " T
Therefore,
on 1 8E on
Cp—Cy=T0 4 — 2
oT  po 9T T oT
Also recall that

n=n(E,T)=17(S,T).
22
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17.

Therefore, keeping S constant while differentiating, we have

oi _ on OE i

ar _ oE or " or’

Noting that E = E(S, T'), and plugging back into the equation for the difference between the two specific heats, we have

o OE 1 OE
Cp—Cy=T7 20,92, "~ 5.9%
OE 9T ' po = OT

Recalling that
on 1 0S8

OE po OT

we get

o oT | " oT -

1 S E
cp-cv:<s_Tas).8

For thermoelastic materials, show that the specific heats can also be related by the equations

PO aiT

1 ., OFE 8EA<821/) .8E> 14 9B

Cp—Cy=—8: 4 —: S
po 9T ' 9T "\OEOE oT

Recall that

o]
S=po oo = po FB(S,T),T).

Recall the chain rule which states that if
g(u,t) = f(@(u,1),y(u, 1))

then, if we keep u fixed, the partial derivative of g with respect to ¢ is given by

dg _0f dx _ Of dy

ot 9z ot Oy ot

In our case,

T OF
po OT ~

95 0B
OE = oT

u=3S, t="T, g(S’T):Sv J?(S,T):E(S,T), y(S»T):Tr and f:PO f

Hence, we have

S = g(S,T) = f(E(SvT)vT) = PO f(E(SvT)vT) .

Taking the derivative with respect to 1" keeping S constant, we have

).

0 1
dg o of OE Of O
P = po — + —
oT T OE 90T 0T OT
or,
_of 0B of
T OE 8T  oT
Now,
2 2
= L o, U 0w
OE OE OEOE oTr  OTOE
Therefore,
_ O OB 9y _ 0 (99 9E 0 (O
~ OEOE 0T OTOE OE \OE) 9T 0T \OE
Again recall that,
1
o _1g
OE  po
Plugging into the above, we get
_ v 9E 105 195 9E 108
 OEQE 8T  po 8T po OE 8T = po 8T
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Therefore, we get the following relation for 9S /0T

o8 __ Py OE__0S OE
T OEOE 8T ~ OE 9T

Recall that

Q
|
S
I

1
7(S,T§>:‘LE,
o or or

Plugging in the expressions for S/9T we get:

2 1
9%y '8E)_8E7 (S T@S'BE)'aE

00 OEOE 0T ) 0T po OE 0T ) oT "
Therefore,
1 E 2 E E 1 E T E E
Cp_Cv:fS:a— T(aw :a—):a—:—sla— —(a—sa—)a—
00 oT OEOE 0T oT 00 oT  po \OE 0T oT

Using the identity (A : B) : C = C': (A : B), we have

1
=—8: —+ — :
PO oT  po OT

1 OFE OE 8%y OE
—Cy=—8:—+T : T —
G -C o + (8E8E BT)

OFE OE T OE (85’ ) BE)
PO or orT

OE " aT

Consider an isotropic thermoelastic material that has a constant coefficient of thermal expansion and which follows the St-Venant Kirchhoff model,

i.e,
ap =al and C=21Q®1+2ul
where « is the coefficient of thermal expansion and 3 A = 3 K — 2 p where K, p are the bulk and shear moduli, respectively.

Show that the specific heats related by the equation

1 2
Cp—Cy=—]atu(S)+9a> KT] .
J40]

Recall that,

1 T
Cp—Cy=—8S:ag+—ag:C:ag.
PO PO

Plugging the expressions of oz and C into the above equation, we have

Cp—Cv:iSZ(Oél)—‘rZ(Oé])l()\l®1+2M|)2(O¢1)
PO PO
2

« a* T
= —u(S)+ 1:AN1Q®1+2ul):1
PO [40]

o?T

= 2 u(s) + 1:(\t(1)1+2u1)
)

£0

a 2T
= —ur(S) +
) PO

32T

(3Atr(1) + 2u (1))

a
= —1u(S)+
PO PO

atr(S) 9a2KT
T
PO PO

(34 2p)

Therefore,

1 2
Cp—Cy=—]atr(8S)+9a> KT] .
[40]

24



References

[1] T. W. Wright. The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press,
Cambridge, UK, 2002.

[2] R. C. Batra. Elements of Continuum Mechanics. AIAA, Reston, VA., 2006.

[3]1 G. A. Maugin. The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction. World Scientific,
Singapore, 1999.

[4] M. D. Greenberg. Foundations of Applied Mathematics. Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1978.

[5] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. John Wiley
and Sons, Ltd., New York, 2000.

[6] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, New York, 1981.

25



	Governing Equations
	Balance Laws
	The Clausius-Duhem Inequality
	Constitutive Relations
	Other strain and stress measures
	Stress Power
	Helmholtz and Gibbs free energy
	Specific Heats


	Appendix

