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Quantum spin Hall phase in 2D trigonal lattice
Z.F. Wang1,2, Kyung-Hwan Jin2 & Feng Liu2,3

The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics.

Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH

phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding

model analyses and calculations show that the QSH phase arises from a spin–orbit coupling

(SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (G point),

whose topological phase diagram is mapped out in the parameter space of orbital energy and

SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is

shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap

of B73 meV, facilitating the possible room-temperature measurement. Our results will

extend the search for substrate supported QSH materials to new lattice and orbital types.

DOI: 10.1038/ncomms12746 OPEN

1 Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of
Science and Technology of China, Hefei, Anhui 230026, China. 2 Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah
84112, USA. 3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China. Correspondence and requests for materials should be addressed to
Z.F.W. (email: zfwang15@ustc.edu.cn) or to F.L. (email: fliu@eng.utah.edu).

NATURE COMMUNICATIONS | 7:12746 | DOI: 10.1038/ncomms12746 | www.nature.com/naturecommunications 1

mailto:zfwang15@ustc.edu.cn
mailto:fliu@eng.utah.edu
http://www.nature.com/naturecommunications


C
urrently, there are two prevailing theoretical models for
the quantum spin Hall (QSH) phase in a two-dimensional
(2D) system: the Kane–Mele model1 and the Bernevig–

Hughes–Zhang (BHZ) model2,3. In Kane–Mele model, the QSH
phase is realized by any finite SOC-induced bandgap opening at
Dirac point, as a generalization of Haldane’s model4 to spinful
system with time reversal symmetry in a hexagonal lattice. In
BHZ model, the QSH phase is realized by SOC-induced band
inversion at time reversal invariant momenta between two bands
of different parities, originally derived from a square lattice of
HgTe quantum-well system. However, 10 years after these
original theoretical proposals, only two material systems with a
tiny bandgap (HgTe/CdTe (ref. 3) and InAs/GaSb (ref. 5)) have
been confirmed experimentally for the BHZ quantum-well model,
while no experiment has yet to confirm the Kane–Mele model in
a real material of hexagonal lattice, despite many material systems
have since been theoretically predicted6–23. Therefore, there
remains an intensive search for QSH materials, especially with a
large gap, and it is highly desirable to expand such search beyond
the original hexagonal and square lattice to increase the feasibility
for experimental realization.

Here we prescribe a discrete lattice model for QSH phase in a
trigonal lattice. We consider a minimal basis of three orbitals
(s, px, py) per lattice site of trigonal symmetry with nearest-
neighbour hopping, solve an effective tight-binding Hamiltonian
and develop a generic phase diagram for the non-trivial band
topology in the parameter space of orbital energy and SOC.
Depending on the order of s versus p orbital energies, a QSH
phase may arise from either strong or weak SOC. Most
remarkably, based on first-principles calculations, this exact
QSH model is shown to be possibly realizable in an experimental
system of Au/GaAs(111)24 with a large non-trivial SOC gap of
B73 meV.

Results
The minimal basis QSH lattice model. In general, a minimal
basis of three orbitals (s, px, py) in a trigonal lattice is shown in
Fig. 1a, which can also be equivalently transformed into three sp2

hybridized orbitals, as shown in Fig. 1b. The corresponding tight-
binding Hamiltonian in the basis of (s, pxþ ipy, px� ipy) is shown
in Supplementary Note 1. Around the G point, expending to the
first-order of k the Hamiltonian for spin-up band reduces to

H ¼
esþ 6tsss
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where es and ep are on-site energies for s and p orbitals,
respectively. tsss, tsps, tpps and tppp are nearest-neighbour hopping
parameters and l is SOC strength. kx and ky are momentum
along x and y direction. Solving equation (1), the three eigen-
values are Es¼ esþ 6tsss and Ep

±l¼Ep±l¼ epþ 3(tppsþ tppp)±l.
Clearly, the s orbital is independent of SOC and the two p orbitals
are degenerate without SOC. Depending on the order of Es versus
Ep, there are two different types of bands.

For the first type, the s-band is above the p-band (Es4Ep)
without SOC, as shown in Fig. 1c. The red and blue colours
indicate the components of s and p orbitals, respectively, and the
parities for each sub-band at time reversal invariant momenta25

(G point and three M points) are labelled with þ and � signs. It
is found that the topological invariant25 is Z2¼ 0 for middle and
bottom two sub-bands, indicating clearly a normal insulator
phase. To realize the QSH phase, an SOC-induced s–p band
inversion is needed (EsoEp

l), that is, first closing of a trivial gap
followed by reopening of a non-trivial gap by including the SOC.

With the increasing SOC strength, one can see that the bandgap
between top and middle sub-band first reduces and closes
(Fig. 1d), and then reopens (Fig. 1e) at the G point. The s–p band
inversion induces a parity exchange in this process, so that the
topological invariant changes from Z2¼ 0 (Fig. 1c) to Z2¼ 1
(Fig. 1e) for the middle and bottom two sub-bands.

For the second type, the s-band is below the p-band (EsoEp)
without SOC, as shown in Fig. 1f. Different from Fig. 1c, the
topological invariant is already Z2¼ 1 for the middle and bottom
two sub-bands, that is, the band order has already been inverted
even without SOC. Thus, any finite SOC will open a non-trivial
gap at Dirac point to turn the system into a QSH phase as the
case for graphene1, as shown in Fig. 1g. This second type of QSH
phase in a trigonal lattice has also been recently discussed with
multiple p-bands in a k � p model26. The parity does not change by
including the SOC in this process. On the basis of the above band
order analysis, a topological phase diagram can be constructed, as
shown in Fig. 1h. Using D¼Es�Ep and l as two independent
parameters, normal insulator and QSH phase is divided by the
bandgap closing line (Es¼ Ep

þ l, dashed line in Fig. 1h). The
parameters used for band structure in Fig. 1c–g are labelled with
I–V. We have marked these data points in the phase diagram
(Fig. 1h), with dashed arrows indicating the increasing SOC
strength to distinguish these two different QSH phase realization
processes. Thus, we introduce a discrete lattice model with
minimal basis of three orbitals in a trigonal lattice to realize the
QSH phase.

The effective QSH model. The band structure evolution in
Fig. 1c–g (I–V) can be seen more intuitively from a three-
dimensional (3D) band plot around the G point, as shown in
Fig. 2a,d for the first and second type of band order, respectively.
It has been shown that different lattices models may be
adiabatically connected to different classes of effective models of
topological quantum field theory at the continuum limit, which
generally requires only two-band inversion27. Correspondingly,
one can reduce the three-band Hamiltonian to an effective
two-band Hamiltonian around the G point27 as
Heff¼ d0(I)þ d � r, where I is the identity matrix and r is the
Pauli matrices, d0 is a parameter and d is a 3D vector field in
momentum space (Supplementary Note 2). For the non-trivial
band III (Fig. 2a) and V (Fig. 2d), d̂ ¼ d= dj j has a vortex
structure around the G point, as shown in Fig. 2b,e, respectively.
At the G point, d̂ is along south pole in Fig. 2b and north pole in
Fig. 2e. When k goes away from the G point, d̂ changes direction
gradually from out of plane to in-plane in both cases. In addition,
the energy splitting between the two bands is characterized by the
value of 2|d|, which is |Es–Ep

þ l| and 2l at the G point for band III
and V, respectively. Generally, a vortex is a topological defect
described by the Chern number (C). To confirm this, we also
calculate the Berry curvature for band III and V, as shown in
Fig. 2c,f, respectively. The Berry curvature is non-zero around the
G point and gives C¼ 1, confirming a non-trivial topological
phase.

The first-principles calculations. After establishing the above
QSH model, the next question is whether it can be realized in a
real material? Instead of searching for a free-standing 2D
material, which is generally metastable and whose intrinsic
topological properties can be altered when it is placed on a
substrate, we opt to focus on surface-based 2D materials that is
supported on a substrate, that is, it is atomically bonded to but
electronically decoupled from the substrate15–19,28,29, so that it is
relatively more feasible for experimental realization, as well as
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Figure 1 | Minimal basis tight-binding model for QSH phase in a trigonal lattice. (a,b) Trigonal lattice with three orbitals (s, px, py) per lattice site

and its equivalent three sp2 orbitals. a1 ¼ ð
ffiffiffi
3
p

=2; � 1=2Þ and a2 ¼ ð
ffiffiffi
3
p

=2; 1=2Þ are lattice vectors. (c–e) The first-type band structures with parameter

es¼0.83 eV, ep¼0 eV, tsss¼ –0.04 eV, tsps¼0.09 eV, tpps¼0.18 eV and tppp¼0.005 eV. l is 0, 0.03 and 0.08 eV for a,b and c, respectively.

(f,g) The second-type band structures with es¼0.74 eV and l¼0, 0.03 eV for f,g respectively. The other parameters are the same to those in c–e.

From c–g, the red and blue colours indicate the component of s and p orbitals, respectively, and the parities for each sub-band at time reversal invariant

momenta are labelled with þ and � signs. (h) Topological phase diagram in the parameter space of D¼ Es� Ep (bandgap between s and p orbitals at G
point without SOC) and l (SOC strength). The colour indicates the bandgap between top and middle band. The band structure parameters for c–g are

marked by the dots with labels I–V in h. The dashed line is the boundary between normal insulator (NI) and QSH phase. The dashed arrows indicate the

increasing SOC strength.
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Figure 2 | Band, vortex and Berry curvature around the C point. (a) 3D band structure around the G point for bands I–III, illustrating the s–p band

inversion process. (b,c) Vortex structure of d̂ and Berry curvature around the G point for the effective (s, p) two-band model of band III in a. (d) 3D band

structure around the G point for bands IV and V, illustrating the p–p bandgap-opening process. (e,f) Vortex structure of d̂ and Berry curvature around the G
point for the effective (p, p) two-band model of band V in d.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12746 ARTICLE

NATURE COMMUNICATIONS | 7:12746 | DOI: 10.1038/ncomms12746 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


easier to facilitate experimental measurement and device
fabrication. Also, we note that usually metal atoms favour a
close-packing geometry forming trigonal lattice in 2D rather than
the open hexagonal lattice. In fact, many heavy metal atoms
grown on a semiconductor surface have been found to exhibit a
trigonal lattice symmetry, such as Bi and Tl on Si(111)30, Au on
Ge(111)31.

Specifically, the system of Au/GaAs(111) has drawn our
attention. Hilner et al.24 showed that at low coverage of Au on
the As-terminated GaAs(111) surface, a

ffiffiffi
3
p
�

ffiffiffi
3
p

R30� trigonal
superlattice structure was observed by scanning tunnelling
microscopy. Furthermore, a theoretical model with one Au
atom adsorbed on every third hexagonal close-packed threefold
hollow site of the Ga lattice is shown to be the most energetically
stable, with a simulated scanning tunnelling microscopy image in
excellent agreement with the experiment (Fig. 1c in ref. 24). So,
starting from the known structural model of Au/GaAs(111)24

(Fig. 3a), its topological properties are systematically studied. The
band structure of Au/GaAs(111) without SOC is shown in Fig. 3b.
The key feature of notice is the Dirac band around the G point
above the Fermi level (a 3D band plotting is shown in the inset of
Fig. 3b), which are well separated from the other bulk bands
(shaded region). The s and p orbital components for band I, II
and III (labelled in Fig. 3b) are shown by red and blue colours,
respectively. At the G point, band I, II and III are mainly made of
p, p and s orbitals. When k goes away from the G point, band I, II
and III are mainly made of s, p and p orbitals. The overall band
shape and orbital components are found to be consistent with the
band IV (Fig. 1f), as obtained from the minimal basis model in a
trigonal lattice discussed above. This is further confirmed by
plotting the real-space charge density distribution of these three
bands at the G point, as shown in Fig. 3c. For band I and II, the
charge densities are mainly localized on top of three As atoms,
showing an in-plane p orbital shape. For band III, the charge
densities are mainly localized on Au atom, showing an s orbital
shape. So, effectively these three bands arise from three orbitals of
(s, px, py) character (Fig. 1b) with nearest-neighbour hopping in a
trigonal lattice.

Quantitatively, to obtain a better fitting for the first-principles
bands (band I, II and III) of Au/GaAs(111), a 3� 3 Wannier
Hamiltonian is constructed by using the maximally localized
Wannier functions (MLWFs) in Wannier90 package32. As shown
in Fig. 3d, the Wannier band shows excellent agreement with the
first-principles band. The three fitted MLWFs are shown in
Fig. 3e, which are equivalent to each other and have a threefold
rotational symmetry around centre Au atom. Each MLWF has
mixed components from both As-p and Au-s orbitals. Adding the
components together, the overall orbital shape is shown in the last
panel of Fig. 3e. An s-type orbital is centred at Au atom, and three
tilted p-type orbitals are centred at three surface As atoms
along the As–Au bond direction, forming effectively an
sp2 hybridization. This can be easily understood from the un-
hybridized surface orbitals. As schematically shown in Fig. 3f,
each Au atom contributes one s orbital, each dangling bond of
surface As atom contributes one sp3 orbital. The sp3 orbital can be
further decoupled into the orbitals along and perpendicular to the
Au–As bond directions. Because of the odd orbital symmetry, the
perpendicular component has a negligible hopping integral with
Au-s orbital, while the other component along the bond has a
large overlap with the Au-s orbital to form a s bond.

The analysis of non-trivial topological phase. Generally, when
SOC is introduced to the Dirac band, a non-trivial topological
phase is expected1. Thus, we proceed by calculating the band
structure of Au/GaAs(111) with SOC. As shown in Fig. 4a, an
SOC gap is opened at the G point; the orbital components for
band I, II and III remain the same as that without SOC (Fig. 3b).
Because of the large SOC in Au and GaAs, the size of SOC gap is
very significant of B73 meV (Fig. 4b), which facilitates
possibly the room-temperature measurement. In addition, the
inversion symmetry is broken in Au/GaAs(111), so that the band
degeneracy is lifted by Rashba splitting. Neglecting the Rashba
effect, the SOC gap and bands can be well reproduced
by including an on-site SOC term in our minimal-basis
tight-binding band V, as shown in Fig. 1g. A further
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Figure 3 | Band and orbital analysis for Au/GaAs(111) without SOC. (a) Top view of
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R 30� superlattice structure for Au grown on As-terminated

GaAs(111) surface. (b) Band structure of Au/GaAs(111) superlattice without SOC. The inset is 3D plotting of I, II and III bands around G point. The red and

blue colours indicate the component of s and p orbitals, respectively. (c) Charge density distribution of I, II and III bands at G point, showing the surface

character. (d) Comparison between density functional theory (DFT) bands (solid lines) and MLWFs fitted bands (red dots). (e) Top view of three MLWFs

fitted from the DFT bands and the overall orbital shape by adding them together. Red and blue colours denote positive and negative value, respectively.

(f) Schematic view of the un-hybridized orbitals. One s orbital for Au and three sp3 orbitals for three As atoms, forming a tetrahedron structure. For clarity,

only Au and the top two (one) bilayer GaAs atoms are plotted in c,e.
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comparison between the fitted Wannier band and first-principles
band is shown in Fig. 4b, showing excellent agreement.

To clearly identify the non-trivial topology in Au/GaAs(111),
we have calculated its spin Berry curvature, spin Hall

conductance and edge states by using the fitted Wannier
Hamiltonian. The spin Hall conductance (ss

xy ¼ 2Cs � e
4p) is

defined based on the spin Chern number (Cs), which can be
calculated from the spin Berry curvature by using standard Kubo
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formula10. Here e is the elementary charge and p is the
mathematical constant. Figure 4c shows the spin Berry
curvature around the G point, which is comparable to that
shown in Fig. 2f. Figure 4d shows the calculated spin Hall
conductance as a function of Fermi level, which has a quantized
value within the energy window of SOC gap, demonstrating the
critical feature of QSH phase. The non-zero spin Chern number
can also be manifested by the presence of gapless edge states
within the SOC gap. One-dimensional (1D) ribbon band
structure of Au/GaAs(111) with a width of 100 unit cells are
calculated33, as shown in Fig. 4e. A pair of gapless edge states with
a Dirac cone at the G point, which are energy-degenerate for
opposite (left and right) edges, are seen within the SOC gap. The
real space distribution of the edge states, at the energy marked by
blue dot in Fig. 4e, is shown in Fig. 4f. Clearly, the degenerated
edge states are spatially localized at the opposite edges (left and
right) of the ribbon. The number of the edge states indicates the
absolute value of the spin Chern number, which is consistent with
the calculated Cs¼ 1 in Fig. 4d.

Surface n-doping to tune Fermi level. We note that the Fermi
level of Au/GaAs(111) is not in the non-trivial SOC gap, so
n-doping is needed. Generally, n-doping can be more easily
realized than p-doping in surface systems. For example,
alkali-metal atoms have been widely used for surface n-doping in
the experiments, including graphene34, superconducting FeSe
(ref. 35) and metal film30. Thus, we have adopted the same
strategy using K to n-dope the Au/GaAs(111) surface. Our
calculations show that K prefers to adsorb at the hexagonal close-
packed hollow site and form a uniform distribution due to the
Coulomb repulsion between charged K atoms15. At 1/3 and 2/3
monolayer (ML) of K coverage, the Fermi level of Au/GaAs(111)
can be tuned close to and below and above the SOC gap,
respectively, and 1D ribbon calculations further demonstrate their
non-trivial topological edge states (Supplementary Fig. 1). The
Fermi level can be continuously moved upward, so at 5/12 ML
(see atomic structure in Fig. 5a modelled by a larger 2� 2
supercell), the Fermi level is moved into the Dirac band without
SOC (Fig. 5b) or inside the gap with SOC (Fig. 5c). It is important
to notice that K surface adsorption provides an ideal n-doping by
moving the Fermi level without affecting the bands of host system
in all the cases studied. Furthermore, 1D ribbon calculations
demonstrate two non-degenerated gapless Dirac edge states
within SOC gap, as shown in Fig. 5d. From the edge-projected
bands, the left (Fig. 5e) and right (Fig. 5f) Dirac edge states can be
distinguished. Thus, Au/GaAs(111) can be tuned into an intrinsic
2D TI with surface alkali-metal doping. Moreover, we have done
molecular dynamics simulations in a canonical assemble at room
temperature to further demonstrate the stability of K atoms on
GaAs surface (Supplementary Fig. 2).

Discussion
Currently, there are two experimental methods that can be used
to detect topological edge states in 2D TIs. One is the transport
measurement to measure the quantized conductance induced by
topological edge state, and the other is scanning tunnelling
spectroscopy measurement to image the real-space topological
edge state within the energy window of SOC gap. For the second
method, even if the Fermi level is below the non-trivial SOC gap
(a non-intrinsic TI), its topological edge state can still be observed
experimentally36–38, because the empty state of TI far away from
the Fermi level can be easily accessed by scanning tunnelling
spectroscopy39. Thus, we believe our work may stimulate
new experimental studies of Au/GaAs(111) beyond previous
efforts, especially for K-doped systems. Without our theoretical

prediction, however, this system could be easily overlooked
because it has a trigonal (Au) lattice, which is not known to
support topological state before.

In summary, we introduce a generic minimal-basis three-
orbital QSH model in trigonal lattice, which can be reduced to an
effective two-band model at the continuum limit. Furthermore,
we suggest possible experimental realization of our model in the
Au/GaAs(111) system that has already been experimentally
grown previously. Our findings not only enrich the basic
knowledge of QSH phase but also extend the search for QSH
materials to new lattice and orbital types. We believe our
proposed new classes of QSH materials can be generalized
to other metal elements and semiconductor surfaces for
experimental exploration.

Methods
The first-principles calculations. The first-principles calculations are carried out
in the framework of generalized gradient approximation with Perdew–Burke–
Ernzerhof functionals using the Vienna Ab initio simulation package40. Theffiffiffi

3
p
�

ffiffiffi
3
p

R30� GaAs(111) surface is simulated by six-bilayer slabs with lattice
constant a¼ 7.06 Å obtained from the optimized bulk GaAs. The bottom surface is
saturated by pseudo-hydrogen atoms fractionally charged with 1.25e. All the
calculations are performed with a plane-wave cutoff of 400 eV on the 9� 9� 1
Monkhorst–Pack k-point mesh. The vacuum layer of 15 Å thick is used to ensure
decoupling between neighbouring slabs. During structural relaxation, bottom
two-bilayer GaAs and hydrogen atoms are fixed. The Au and top four-bilayer GaAs
atoms are relaxed until the forces are smaller than 0.01 eV Å� 1.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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