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Abstract

A general analytical scheme for computing the n-fold convolution of exponential-

sum distribution functions has been developed in this paper. The n-fold convolution is

first expressed by multiple sums of recursive integrals. These recursive integrals are then

reconstructed with a series of delta functions to avoid separations of integrations. Part

of the recursive integrals has been solved analytically by either direct integration or with

Maple-like symbolic software packages. The general analytical solution of the n-fold
convolution of exponential-sum distribution functions is obtained in two steps: first

developing a general pattern of Laplace transform of the recursive integrals, and then

performing an inverse Laplace transform operation to the general pattern of the de-

veloped Laplace transform. The solution presented in this paper provides another op-

tion for computing the n-fold convolution of exponential-sum distribution functions.
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1. Introduction

In a previous work [1], the problem of computing the n-fold convolution of

exponential-sum distribution functions was studied. A general analytical
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multiple-sum solution was derived there with the application of complete

multinomial expansion theorem and Laplace transform technique. However,
the solution presented there involves rather complex derivation. In this paper,

we present a novel analytical scheme with less complexity to compute the n-fold
convolution of exponential-sum distribution functions. The new general ana-

lytical solution of the n-fold convolution of exponential-sum distribution

functions is much simpler to understand conceptually and much easier to

implement computationally.

We begin with readdressing the problem as follows.

A density distribution function with exponential sums is expressed as
f ðtÞ ¼
Xm
i¼1

aie
�ki t; ð1Þ
where m, a finite positive integer, is the number of exponentials; ai and ki are
positive constant real numbers; ki 6¼ kj if i 6¼ j; and f ðtÞ is defined in positive

time domain where t 2 ½0;1Þ. The corresponding cumulative distribution
function of f ðtÞ is
F ðtÞ ¼
Z t

0

f ðxÞdx: ð2Þ
The n-fold convolution of f ðtÞ is defined as
f ðnÞðtÞ ¼
Z t

0

f ðn�1ÞðxÞf ðt � xÞdx ð3Þ
and the n-fold convolution of F ðtÞ is
F ðnÞðtÞ ¼
Z t

0

f ðnÞðxÞdx: ð4Þ
Our objective here is to find less complex solutions for (3) and (4) than those

presented in [1] provided that f ðtÞ and F ðtÞ are defined in (1) and (2), respec-

tively.
2. The solution with recursive integrals

N -fold convolution has a recursive trait in nature. We shall show in the

following theorem that the problem posed above can be reduced to the com-

putation of some simple recursive integrals.
Theorem 1. The n-fold convolution f ðnÞðtÞ of exponential-sum distribution func-
tion f ðtÞ defined in (1) can be calculated as
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f ðnÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amne
�kmn tunðtÞ: ð5Þ
Correspondingly, the n-fold convolution F ðnÞðtÞ of cumulative distribution function
F ðtÞ can be calculated as
F ðnÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amn

Z t

0

e�kmn xunðxÞdx: ð6Þ
unðtÞ can be recursively calculated using the following integrals:
unðtÞ ¼
Z t

0

e�ðkmn�1
�kmn Þxun�1ðxÞdx; ð7Þ
with
u1ðtÞ ¼ 1: ð8Þ
Proof. Let us prove Theorem 1 by induction.

For n ¼ 1, f ð1ÞðtÞ ¼ f ðtÞ, and obviously Theorem 1 holds.
Assume Theorem 1 is correct for n ¼ N . Let us check the situation when

n ¼ N þ 1. From the assumption, we have
f ðNÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mN¼1

am1
am2

. . . amN e
�kmN tuNðtÞ: ð9Þ
According to the definition in (3), we can calculate the N þ 1-fold convolution

of f ðtÞ as follows:
f ðNþ1ÞðtÞ ¼
Z t

0

f ðNÞðxÞf ðt � xÞdx

¼
Z t

0

Xm
m1¼1

Xm
m2¼1

� � �
Xm
mN¼1

am1
am2

� � � amN e
�kmN xuN ðxÞ

 !

�
Xm

mNþ1¼1

amNþ1
e�kmNþ1

ðt�xÞ

 !
dx

¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mN¼1

Xm
mNþ1¼1

am1
am2

� � � amN amNþ1
e�kmNþ1

t

�
Z t

0

e�ðkmN �kmNþ1
ÞxuN ðxÞdx: ð10Þ



228 N.-Y. Ma, F. Liu / Appl. Math. Comput. 158 (2004) 225–235
Let us define
uNþ1ðtÞ ¼
Z t

0

e�ðkmN �kmNþ1
ÞxuNðxÞdx: ð11Þ
Substituting (11) into (10), we have
f ðNþ1ÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm

mNþ1¼1

am1
am2

� � � amNþ1
e�kmNþ1

tuNþ1ðtÞ: ð12Þ
Substituting (12) into (4), we acquire
F ðNþ1ÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm

mNþ1¼1

am1
am2

� � � amNþ1

Z t

0

e�kmNþ1
xuNþ1ðxÞdx: ð13Þ
Therefore, for n ¼ N þ 1, Theorem 1 also holds. Thus, we have proved by

induction that for any n > 0 Theorem 1 is correct. h

Theorem 1 provides a concise solution for the n-fold convolution of expo-

nential-sum distribution functions. It is quite easy to program the solution with

a series of nested for-loops of equal sizes. The solution is not necessarily cheap
in cost, but it is simple in concept. If the number of exponentials m in (1) is

small, we may directly use Theorem 1 to obtain analytical solutions. For in-

stance, if m ¼ 1, then ki ¼ kj, unðtÞ ¼ tn�1=ðn� 1Þ! and f ðnÞðtÞ ¼ an1t
n�1e�k1t=

ðn� 1Þ!. This is the standard solution of the n-fold convolution of one-expo-

nential distribution functions, presented in many textbooks [2].

If m > 1, we have to consider separately the situations for mn�1 ¼ mn vs.

mn�1 6¼ mn in evaluating unðtÞ ¼
R t
0
e�ðkmn�1

�kmn Þxun�1ðxÞdx for n > 1. Because

unðtÞ is recursively evaluated, we would have to use 2n�1 separate expressions to
represent unðtÞ. Thereby, it is necessary to reconstruct e�ðkmn�1

�kmn Þt into some

simpler equivalent function forms, so that the separate expressions of unðtÞ can
be avoided.

Let us define
dn ¼
1; mn�1 ¼ mn;
0; mn�1 6¼ mn

�
ð14Þ
and
bn ¼ dn þ kmn�1
� kmn : ð15Þ
The complement of dn is �dn. Then, we have
�dn ¼
0; mn�1 ¼ mn;
1; mn�1 6¼ mn

�
ð16Þ
and
bn ¼
1; mn�1 ¼ mn;
kmn�1

� kmn ; mn�1 6¼ mn:

�
ð17Þ



N.-Y. Ma, F. Liu / Appl. Math. Comput. 158 (2004) 225–235 229
Consequently, we have the following equality for n > 1:
e� ðkmn�1
� kmnÞt ¼ dn þ �dne� bnt: ð18Þ
Substituting (18) into (7), we obtain the following reconstructed recursive in-

tegrals:
unðtÞ ¼
Z t

0

ðdn þ �dne
�bnxÞun�1ðxÞdx; n > 1 ð19Þ
plus the base case (8).
Therefore, we have reduced the problem of computing the n-fold convolu-

tion of exponential-sum distribution functions to solving the recursive integrals

(19) and (8).

Next, we discuss two different schemes to solve the recursive integrals.
3. Solution of the recursive integrals by direct integration

The recursive integrals (19) and (8) can be solved straightforwardly by direct

integration, using either numerical integration or symbolic integration software

packages, such as Maple. For a specific problem with a known exponential-

sum distribution function, Maple-like symbolic software packages can generate

nice analytical solutions for the recursive integrals with some simple coding.
However, Maple-like software packages are not smart enough to recognize the

solution pattern for the general problem we are discussing here. As a matter of

fact, Maple-like solutions are more or less messed up. Consequently, we shall

take direct integration by hand to solve the recursive integrals.

Examining the recursive integrals, we can find that the functions in the re-

cursive integrals has the form of
P

i aix
mie�bix, where, ai and bi are arbitrary

constant real numbers, and mi are non-negative integers. Such integrations are

guaranteed solvable. The following are sample solutions of the recursive
integrals for some small n values
u1ðtÞ ¼ 1;

u2ðtÞ ¼ d2t þ
�d2

ð�b2Þ
ðe�b2 � 1Þ;

u3ðtÞ ¼
d2 �d3

ð�b3Þ
2
�

�d2d3
ð�b2Þ

2
þ

�d2 �d3
ð�b3Þ½�ðb3 þ b2Þ�

�
�d2d3
ð�b2Þ

t

þ d2d3
2!

t2 þ d2 �d3
ð�b3Þ

te�b3t � d2 �d3
ð�b3Þ

2
e�b3t

�
�d2d3

ð�b2Þ
2
e�b2t þ

�d2 �d3
ð�b2Þ

e�b3t
1

½�ðb3 þ b2Þ�
e�b2t

�
� 1

ð�b3Þ

�
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Clearly, the analytical solutions of the recursive integrals quickly become ex-

tremely complicated with the increase of n. It is difficult to identify the general
solution pattern from these sample solutions.

If the goal is to only compute the n-fold convolution, it may be sufficient to

use the solutions of the recursive integrals by the direct integrations with the

help of Maple-like symbolic integration packages. However, it is often desir-

able to obtain the general solution pattern of the recursive integrals, so the n-
fold convolution can be performed more efficiently, such as as a part of sci-

entific and engineering models. Below, we use Laplace transform technique to

solve this problem.
4. Solution of the recursive integrals with Laplace transform

Let us define the Laplace transform of the nth order recursive integral as

gnðsÞ, i.e.

gnðsÞ ¼ L½unðtÞ�; ð20Þ
where L represents the operation of forward Laplace transform. We summarize

the general pattern of the Laplace transform of the recursive integrals in the

following theorem.

Theorem 2. The Laplace transform of the recursive integrals expressed in (19)

and (8) can be arithmetically expressed by the following formula:
gnðsÞ ¼
1

s

X2n�1

i¼1

Qn�1

j¼1 d
bij
n�jþ1

�d
�bij
n�jþ1Qn�1

j¼1 sþ
Pj

k¼1
�bikbn�kþ1

� � ; n > 1; ð21Þ

g1ðsÞ ¼
1

s
; n ¼ 1; ð22Þ
where, bij is a bit number, either 1 or 0, and �bij is the complement of bij, i.e.
�bij ¼ 1� bij.

Proof. Let us prove Theorem 2 by induction.

Obviously, for n ¼ 1 and n ¼ 2, Theorem 2 is correct. Let us assume the

theorem is correct for n ¼ N , so, we have
gNðsÞ ¼
1

s

X2N�1

i¼1

QN�1

j¼1 dbijN�jþ1
�d
�bij
N�jþ1QN�1

j¼1 sþ
Pj

k¼1
�bikbN�kþ1

� � : ð23Þ
From (19), we have
uNþ1ðtÞ ¼
Z t

0

ðdNþ1 þ �dNþ1e
�bNþ1xÞuN ðxÞdx: ð24Þ
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Taking Laplace transform operation to (24), we have
gNþ1ðsÞ ¼
1

s
fdNþ1gN ðsÞ þ �dNþ1gN ðsþ bNþ1Þg: ð25Þ
Substituting (23) into (25) and making relevant rearrangement as follows:

gNþ1ðsÞ¼
1

s
dNþ1

s

X2N�1

i¼1

QN�1
j¼1 dbijN�jþ1

�d
�bij
N�jþ1QN�1

j¼1 sþ
Pj

k¼1
�bikbN�kþ1

� �
8<
:

þ
�dNþ1

sþbNþ1

X2N�1

i¼1

QN�1
j¼1 dbijN�jþ1

�d
�bij
N�jþ1QN�1

j¼1 sþbNþ1þ
Pj

k¼1
�bikbN�kþ1

� �
9=
;

¼1

s

X2N�1

i¼1

d1Nþ1
�d0Nþ1d

bi1
N
�d
�bi1
N dbi2N�1

�d
�bi2
N�1 � � �d

biN�1

2
�d
�biN�1

2

ðsþ0bNþ1Þðsþ0bNþ1þ �di1bN Þ���ðsþ0bNþ1þ �di1bN þ �di2bN�1þ���þ �diN�1b2Þ

8<
:

þ
X2N�1

i¼1

d0Nþ1
�d1Nþ1d

bi1
N
�d
�bi1
N dbi2N�1

�d
�bi2
N�1 � � �d

biN�1

2
�d
�biN�1

2

ðsþ1bNþ1Þðsþ1bNþ1þ �di1bN Þ���ðsþ1bNþ1þ �di1bN þ �di2bN�1þ���þ �diN�1b2Þ

9=
;:

Extending the dimension of matrix fbijg from 2N�1 � ðN � 1Þ to 2N � N , and
rearranging bij and the corresponding �bij in the above Laplace transform, we

have
gNþ1ðsÞ ¼
1

s

X2ðNþ1Þ�1

i¼1

QðNþ1Þ�1

j¼1 dbijðNþ1Þ�jþ1
�d
�bij
ðNþ1Þ�jþ1QðNþ1Þ�1

j¼1 sþ
Pj

k¼1
�bikbðNþ1Þ�kþ1

� � : ð26Þ
Therefore, for n ¼ N þ 1, Theorem 2 is also correct, and we have proved

Theorem 2 by induction. h

Now, we need to determine the matrix fbijg for the Laplace transform of the
nth order recursive integral. Let us use Bn to represent the matrix, i.e.
Bn ¼ fbijgn; ð27Þ
and Bn to represent the complement of Bn, i.e.
Bn ¼ f1� bijgn: ð28Þ
Let us define Bn½i� as the ith row of the matrix Bn and treat it as a binary integer

number, and then Bn½i�½j� will be the bit number of bij. Examining the Laplace
transform of recursive integrals, we can find the pattern of Bn½i�
Bn½iþ 1� ¼ Bn½i� � 1; ð29Þ

Bn½1� ¼ 11 . . . 1
zfflfflffl}|fflfflffl{n�1

: ð30Þ
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Correspondingly, we have
Bn½iþ 1� ¼ Bn½i� þ 1; ð31Þ

Bn½1� ¼ 00 . . . 0
zfflfflffl}|fflfflffl{n�1

: ð32Þ
This pattern is not surprising at all. The row number of the matrix corre-
sponds to the term number in the Laplace transform. In each term, di
ði ¼ n . . . 2Þ in (21) will be either alive (present) or dead (absent). Therefore,

Bn½i� is just representing the possible combinations of dn . . . d2 which are either

alive or dead. Because each di has two possibilities, the product of all di�s will
have 2n�1 possibilities. That means the total terms in the Laplace transform

(21) and the total rows in the matrix Bn (27) will both be 2n�1. For instance, in

term 1 of the Laplace transform or row 1 of the matrix Bn, dn . . . d2 are all alive,
and Bn½1� ¼ 11 . . . 1; in term 2n�1 of the Laplace transform or row 2n�1 of the
matrix Bn, dn . . . d2 are all dead, and Bn½2n�1� ¼ 00 . . . 0. Going from row i to
row ðiþ 1Þ, the combination of the states of dn . . . d2 differs by one. We may

write a simple program to compute the matrices Bn and Bn. Fig. 1 shows a

summary of a c-like code fragment for such computation.

To this point, we have completed the pattern recognition of Laplace

transform of the recursive integrals. In order to acquire the general analytical

solution of the recursive integrals, we also need to calculate the inverse Laplace

transform of (21). The inverse Laplace transform can be easily solved from
inverse Laplace transform pairs [3]. However, the inverse Laplace transform

pairs require that all the same factors in the denominator of each term in (21)

must be combined together. Using the above algorithm to calculate Bn, we can
write out the expression of each denominator of (21). Some denominators

corresponding to their term numbers are shown in Table 1.

We can also write a piece of code to do the symbolic calculation to obtain

the expression of each denominator.
Bn[1]=11…1;

for (i=2; i<=2n-1; i++)

Bn[i]=Bn[i-1]-1; 

for (i=1; i<=2n-1 ; i++)

    for(j=1; j<=n-1; j++)

   {
bij = Bn[i][j];

bij = ;1- bij ; 
    }

Fig. 1. A C-like code fragment to compute matrix Bn and Bn.



Table 1

Sample expressions of denominators

Term no. i Bn½i� Expressions of denominators

1 00. . .0000 sn

2 00. . .0001 sn�1ðsþ b2)

3 00. . .0010 sn�2ðsþ b3Þ
2

4 00. . .0011 sn�2ðsþ b3Þðsþ b3 þ b2Þ
5 00. . .0100 Sn�3ðsþ b4Þ

3

6 00. . .0101 Sn�3ðsþ b4Þ
2ðsþ b4 þ b2Þ

7 00. . .0110 sn�3ðsþ b4Þðsþ b4 þ b3Þ
3

8 00. . .0111 sn�3ðsþ b4Þðsþ b4 þ b3Þðsþ b4 þ b3 þ b2Þ
. . .

2n�2 01. . .1111 s2ðsþ bn�1Þðsþ bn�1 þ bn�2Þ � � � ðsþ bn�1 þ bn�2 þ � � � þ b2Þ
2n�2 þ 1 10. . .0000 sðsþ bnÞ

n�1

2n�2 þ 2 10. . .0001 sðsþ bnÞ
n�2ðsþ bn þ b2Þ

2n�2 þ 3 10. . .0010 sðsþ bnÞ
n�3ðsþ bn þ b3Þ

2

2n�2 þ 4 10. . .0011 sðsþ bnÞ
n�3ðsþ bn þ b3Þðsþ bn þ b3 þ b2Þ

2n�2 þ 5 10. . .0100 sðsþ bnÞ
n�4ðsþ bn þ b4Þ

3

2n�2 þ 6 10. . .0101 sðsþ bnÞ
n�4ðsþ bn þ b4Þ

2ðsþ bn þ b4 þ b2Þ
2n�2 þ 7 10. . .0110 sðsþ bnÞ

n�4ðsþ bn þ b4Þðsþ bn þ b4 þ b3Þ
3

2n�2 þ 8 10. . .0111 sðsþ bnÞ
n�4ðsþ bn þ b4Þðsþ bn þ b4 þ b3Þðsþ bn þ b4 þ b3 þ b2Þ

. . .

2n�1 11. . .1111 sðsþ bnÞðsþ bn þ bn�1Þðsþ bn þ bn�1 þ bn�2Þ � � � ðsþ bn þ bn�1þ
bn�2 þ � � � þ b2Þ
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By combining the same factors in each denominator of (21), the Laplace

transform of the nth order recursive integral can be re-expressed as follows:
gnðsÞ ¼
X2n�1

i¼1

Qn�1

j¼1 d
bij
n�jþ1

�d
�bij
n�jþ1Qp

j¼1ðsþ cijÞ
vij : ð33Þ
For different values of j in a given denominator cij have different expressions,

which can be determined from Table 1. vij are integer numbers, which can also

be determined from Table 1.
The inverse Laplace transform of (33) will be the solution of recursive in-

tegrals. Thus, we have
unðtÞ ¼
X2n�1

i¼1

Yn�1

j¼1

dbijn�jþ1
�d
�bij
n�jþ1L

� 1Qp
j¼1ðsþ cijÞ

vij

" #
; ð34Þ
where L� represents the operation of inverse Laplace transform. As the result,

we have reduced the problem to solving the inverse Laplace transform of
1=
Qp

j¼1ðsþ cijÞ
vij . These types of problems have been solved in [1], which we

will not repeat here.
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5. Solution of the n-fold convolution with Laplace transform

After solving the recursive integrals with Laplace transform, we now pro-

ceed to solve the n-fold convolution of exponential-sum distribution functions.

Substituting (34) into (5), we obtain
f ðnÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amne
�kmn t

�
X2n�1

i¼1

Yn�1

j¼1

dbijn�jþ1
�d
�bij
n�jþ1L

� 1Qp
j¼1ðsþ cijÞ

vij

" #
: ð35Þ
Taking Laplace transform of (6), we have
L½F ðnÞðtÞ� ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amn

1

s
gnðsþ kmnÞ:
For n > 1, substituting (33) into the above equation, we obtain
L½F ðnÞðtÞ� ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amn

X2n�1

i¼1

Qn�1

j¼1 d
bij
n�jþ1

�d
�bij
n�jþ1

s
Qp

j¼1ðsþ kmn þ cijÞ
vij :
Taking inverse Laplace transform of the above equation, we obtain the fol-

lowing formula to calculate F ðnÞðtÞ:
F ðnÞðtÞ ¼
Xm
m1¼1

Xm
m2¼1

� � �
Xm
mn¼1

am1
am2

� � � amn

�
X2n�1

i¼1

Yn�1

j¼1

dbijn�jþ1
�d
�bij
n�jþ1L

� 1

s
Qp

j¼1ðsþ kmn þ cijÞ
vij

" #
: ð36Þ
The computation of L�½1=fs
Qp

j¼1ðsþ kmn þ cijÞ
vijg� follows the same line as

that of 1=
Qp

j¼1ðsþ cijÞ
vij at the end of Section 4, and similar solutions can be

found in [1].
6. Conclusions

A simplified general analytical solution of the n-fold convolution of expo-

nential-sum distribution functions has been developed. The solution has been

expressed by some recursive integrals. These recursive integrals are recon-

structed with a series of delta functions to avoid separations of integrations.
The recursive integrals can be solved analytically by direct integrations, or with

Maple-like symbolic software packages, or by Laplace transform technique. A

general analytical solution of the n-fold convolution of exponential-sum
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distribution functions with Laplace transform technique has been presented in

detail. This solution is easy to understand conceptually, and simple to imple-
ment with computers.
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