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Evaluating Simulations and SGS models

* How do we go about testing our models? How should models be validated and
compared to each other?

* Pope (2004) gives 5 criteria for evaluating SGS models:

1. Level of description in the SGS model

2. Completeness of the model

3. The cost and ease of use of the model
4. The range and applicability of the model
5. The accuracy of the model

* Most of these criteria are related to the accuracy of simulation results:

-Accuracy: Ability of the model to reproduce DNS, experimental or theoretical
statistical features of a given test flow (or the ability to converge to these
values with increasing resolution)

An important aspect of this is grid convergence of simulation statistics. This is
not always done but is an important aspect of simulation validation. Note that
this convergence (especially in high-Re flows) may not be exact, we may only
see approximate convergence.

UTHE UNIVERSITY OF UTAH=




Evaluating Simulations and SGS models

-Cost: When examining the above, it is important to include the cost of each model
(and comparisons between alternative models).

-One model may give better results at a lower grid resolution (larger A) but include
costs that are excessive:
Example: Scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, WRR,
2006):
38% increase in cost over constant Smagorinsky model
15% increase over plane averaged scale-dependent model

How much of a resolution increase can we get in each direction for a 30% cost
increase?? Only a little more than 3% in each direction!

-Completeness: A “complete” LES and SGS model would be one that can handle
different flows with simply different specification of BCs, initial conditions and forcings.

-In general LES models are not complete due to grid requirements and (possibly) ad hoc
tuning for different flows.

-Example from RANS: mixing length models are incomplete (different flow different /)
while the k- model can be thought of as complete for RANS since it can be applied to
any flow.
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Accuracy of LES models

* Here we will look at some examples of different measurements of simulation
accuracy and evaluation as well as a few common test cases for LES

* An example of the accuracy of LES models to predict flow statistics (from Porte-Agel et al, JFM 2000 and
Andren et al., 1994, QJRMS):
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*Non-dimensional velocity gradient
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Accuracy of LES models

* An example of the accuracy of LES models to predict flow statistics (from Porte-Agel et al, JFM 2000)
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Test Case: Isotropic Turbulence LES

* An example from Lu et al, 2008
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Test Case: Turbulent Boundary Layers

* An example from Guerts, 2004 of the effect of different SGS models on boundary layer development
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Fig. 8.15. Snapshot of the spanwise vorticity component: (a) DNS prediction, )
LES with Smagorinsky’s model and van Driest damping, (¢) LES with dynamic
eddy-viscosity model. ’
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Test Case: Backward Facing Step

* An example from Cabot and Moin, 2000
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Figure 4. Sketch of the simulation domain for flow over a step of height h with an
expansion ratio of 4 to 5. Wall stress models were used in the hatched region.

0.002

L 0 s [ | IEee—— TBLE wall model
Vi
G o o5 -
—— LES with resolved wall >
— — —- Stress-balance wall model ;
-0.001 ]
- TBLE wall model F F
; ] FHI
’ —-— RANSwithv¥model | gLl gL S IO S B Jl__ 4y =64
-0.002 ‘ ‘ :
0 5 10 15 20 1 15 2 . 35 4 45
x/h unJ,
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LES [2], wall stress models using stress balance and TBLE with a dynamic kappa wall-resolved LES [2], and stress-balance and TBLE wall stress models. The dashed

in equation (5), and a global RANS v? f model [18].
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line is the height of the first computational cell, about 60 wall units near the exit.

UTHE UNIVERSITY OF UTAH=




Boundary Conditions for LES

Boundary Conditions:

* Like all numerical techniques for PDEs, LES requires the specification of boundary
conditions:

-Lateral or inflow/outflow conditions
-Boundary conditions at solid walls (particularly interesting for LES)

-Note in some flows top (upper) boundary conditions are also important. The most
common example (I know of) is of the ABL when buoyancy effects are present
resulting in gravity waves. The two most common ways of dealing with this:

*Rayleigh dampening where a sponge layer of points is defined
Linear wave canceling (Klemp and Durran, MWR, 1983)

-Initial conditions (for time integration) can also be an important issue for some flows
(e.g., decaying isotropic turbulence)

* Here we will talk about inflow boundary conditions and boundary conditions at solid
boundaries
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Need for Proper Inflow Conditions

Inflow Boundary Conditions:
*Issues related to lateral (flow direction) BCs are not _"‘W%%fﬁﬁ O
specific to LES. In DNS nearly identical issues are present. | X0 X

In RANS (many times) this issue is not important since
appropriate conditions based on mean fields are all that ir
needed.

*Simplest case: Periodic BCs
What goes out comes back in (identically).

*For true BL flow (that grow in the flow direction) or flows

with complex geometry, many times we can’t use

periodic BCs.

*The figure and caption to the Figure and caption from Sagaut, page 355

ri ght |”U strate th e im p ortance Fig. 10.16. Illustration of the influence of the turbulent inlet boundary condition W {@ﬁaﬁ

(DNS of a 2D mixing layer). Iso-contours of instantaneous vorticity are shown.

. . Top: reference 2D simulation. Below: Truncated simulation using as inflow con- ‘
Of pro per lnﬂ ow BCS Ina ditions: a) exact instantaneous velocity field stored at the x0 section; b) random d |
velocity fluctuations spatially and temporally uncorrelated (white noise) having the (d)
tu rbUIent ﬂOW. same Reynolds stress tensor components as in case (a); ¢) instantaneous velocity

field preserving temporal two point correlation tensor of case (a); d) instantaneous

° 1 velocity field preserving spatial two point correlation tensor of case (a); €) recon- v
H ere we wi ” cover a feW Ways structed velocity field with the aid of Linear Stochastic Estimation procedure from P?@ ﬁ%
to d eal Wlth th | S the knowledge of exact instantaneous velocity field at 3 reference locations (center
of the mixing layer and 4., /2 where &, is the local vorticity thickness). Courtesy (e)

(See Sagaut Ch 103) of Ph. Druault and J.P. Bonnet, LEA.
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Precursor Simulations Inflow Conditions

Precursor Simulations:
* One of the most effective ways to generate inflow conditions is to specify inflow
from “homogeneous” (for example horizontally) pre-run flow simulations.

extraction

Figure from Sy g & @’@
Saguat, page 362 N 2

Main simulation .

Fig. 10.17. Schematic of the precursor simulation technique. A precursor sim-
ulation of an attached boundary layer flow is performed. An extraction plane is
defined, whose data are used as an inlet boundary condition for a simulation of the
flow past a trailing edge.

* Pros: requires very few assumptions and we don’t need an “adjustment” zone (as

many other techniques do
* Cons: Precursor simulations can be expensive (sometimes as much as the actual

simulation of interest!).
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Rescaling

«Almost all other techniques try to specify: |u(x,,t) = ((x,)) + u' (2o, t)

* Many of these techniques use an assumed energy spectrum combined with assumed
BL profiles (see Sagaut pg 356 for a list) or require other a priori knowledge of
turbulence statistics of the exact flow.

3000

From Saguat, page 364

|

* Another method is to rescale the flow. 2500

-with this technique (shown in the figure Rescaling

to the right), the flow from a downstream =000

location, separated from the inflow w1500 E
enough to be considered independent - °
is scaled (using know flow properties) to 1000 -

become the new inflow.

500 |

-The technique was developed by gl A INT s e SRl g
il. N S .y‘;'a " ‘7'";3\5». A ‘w‘\"“ :{' '\\‘ ;

Lund et al., J. Comp. Phys 1998. o i e L TR
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ot x* Extraction

Fig. 10.18. Schematic of Lund’s extraction/rescaling technique. Instantaneous
isolevels of streamwise velocity in a boundary layer are shown. Courtesy of
E. Tromeur and E. Garnier, ONERA.
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Surface/wall Boundary Conditions

* In many flows of interest a solid wall (or surface) is present in some way.

* It can be very costly to fully resolve the effects of the wall and implement “natural”
no-slip BCs

* Chapman (1979, AIAA) performed the first analysis of grid-resolution requirements for
LES of wall-bounded flows.

* We can divide the flow into 2 regions:

-outer layer: viscosity isn’t as important and grid resolution requirements are more
or less (not including SGS model errors) independent of Re

-inner layer: near wall region where viscosity plays an important role.

Structures (“eddies”) in the inner-layer are approximately constant when non-
dimensionalized with viscous length scales.

-To resolve these motions we need grid spacing of:
*Ax* ~100 (x*=xu./V)

*Az* ~ 20
friction velocity
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Requirements to Resolve the Wall

* Using these Ax* and Az* scales we can show that: N, x N, x N, « Rei'8

if we want to resolve the viscous sublayer (to enforce use the no slip | _
condition). integral Re

* For a BL with Re =10° (moderate-low Re) 99% of our points will need to be in the near
wall region whose thickness is only 10% of the entire boundary layer!
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Figure 1 Number of grid points required to resolve a boundary layer. The “Present capa-
bilities” line represents calculations performed on a Pentium IIT 933MHz workstation with
1Gbyte of memory.
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Approximate wall-boundary conditions

* How do we handle this problem for high-Re
boundary layers?

* Answer: with approximate wall-boundary e ~7 a
conditions: >
-We pick our first grid-point to be i k
sufficiently far from the wall so it lies in BEESEEScEScEcsecEeciest > |
the outer layer. v = e D
-This has the potential to make our x"
simulations only weakly dependent on A%-0.15 d (b)
. . . ) Ay=0.13
Re and grid resolution (if we don’t . S
consider model errors!) . (resolved)
-The goal is to create a model that
calculates the wall shear stress as a = [P layer
ModiEiegus

function of the resolved velocity at the T —m—
lowest grid level.

Figure 2 Sketch illustrating the wall-layer modeling philosophy. (@) Inner layer

-All of the dynamics of the inner layer ~ rescived (%) Tnnerlayermodeled.
must be accounted for with the wall From: Piomelli and Balaras, ARFM, 2002
model.
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Approximate wall-boundary conditions

* Typical high-Re wall models:
-Many wall models use RANS-like approximations

-In high-Re BLs, the most common models are 0t order RANS (i.e. similarity theory).
-u;and Ty, are assumed to be related by the well known log-law:

for a rough-wall =>  [U(z) @i[ln (i) — Uy @1—’ height of 15t grid point
\_'_l K é'g; L Y J

mean velocity = +y/—T7, roughness stability correction

-Schumann (1975) introduced the 1%t of this class of models where:

wi(r,y, z,t ,
Tisaw (T, Y, t) = (Tw) (Uéjz) ) fori=1,2 (x,y)

and where (7,,)was calculated from the mean pressure gradient.

-Grotzbach (1987) modified this by using the log-law to calculate the average shear

stress resulting in the flowing model
U(z)k ui(x,y, 2, t)k
In(z/z0) — \I!M] [ln(z/zo) — \IJM]
This model has the advantage over Schumann’s by allowing the total mass flux to
change in time during a simulation. Both models assume that 7, ~ u;

7-13,10(567 yvt) - = [
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Accounting for flow average flow structures

Figure from Brown and
Thomas (PoF, 1977)

* Piomelli et al., (PoF, 1989) altered the models of
Schumann and Grétzbach in an attempt to account for
the structure of the flow field. [,

* Experimental and numerical studies have demonstrated
that coherent structures exist in the BL and that they are
inclined at oblique angles to the wall (e.g. Brown and
Thomas, PoF 1977). | >

] - o
iSWEEF‘ iBREAK—UP 2-LIFT up Z NEW .
T STREAK

* The inclination of these structures can be measured by A i
looking at the correlation between shear stress and | A SRR STRESS |
velocity in a BL. With the average inclination given by r:”z ?iﬁ":if%‘?f“os o 200 e sssooicd wal | _
the lag to max correlation with height. | -

* Piomelli et al. (1989) took this into account by
Shifting the SG model downstream:

”Ilz(ﬂf + 5d7 Y, <, t)

U(z) _ TR
Where the displacement 0, = zcot~y cooo s ’ ’
And~y ~ 13° for high Re flows. Figure from Masusic et al. (JFM, 2001)

T’iS,w(xv Y, t) — <Tw>
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Local and Higher-order RANS approximations

* The local log-law for ABL flows:

-In the ABL or general flows where no directions of homogeneity exist for determining
(Tw) the log-law is many times used directly to calculate the local shear stress by:

- 2~
Upr(T, Yy, 2, 1)K uilr,y,z,t
Ti3,w(xayat) - [ ( < ) ] [ ( J )]

ln(z/zo) - ‘IJM &r(a?,y, 2y t)
where 7, = , /@?c + ﬂ%

-This formulation assumes 7., ~ 7% and does not preserve (.,,).

 2-layer models (higher-order RANS):
Balaras et al., (AIAA, 1996) used a higher order

RANS closure based on the thin-BL equations: -— -— . —
Ot | 0 (ooon_ OB D i

ot " Iz (@ntis) = dx; " Oz, [(V * Vt)@xn] T M '
where j=1,2, u, is the wall normal Interiace

Inner mesh

component found from continuity and v, is an
eddy_V|SCOS|ty pa rametenzed W|th an algebra|c Figure 4 Inner-and outer-layer grids for the two-layer model.
model. The equations are solved to the wall. Figure from Piomelli and Balaras, 2002
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Comparing different models a pos
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Figure 2. Non-dimensional gradient of the mean streamwise velocity ® = % e
lations that use the SG surface model over surfaces with four different aerodynamic rough-

[y L]
Figure 3. Non-dimensional gradient of the mean streamwise velocity ® = 2%
lations that use the shifted SG surface model over surfaces with four different aerodynamic

49U from simu-

ness lengths z,. The height z is normalized with the boundary-layer depth H. The dotted roughness lengths z,. The height z is normalized with the boundary-layer depth H. The

line corresponds to the classical log-law (expected to hold on the lower 10% of the domain)

dashed line corresponds to the MKP model and a surface roughness z,=0.1 m. The dotted
line corresponds to the classical log-law (expected to hold on the lower 10% of the domain)

with x =0.4. with k =0.4.
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Figure 5. Vertical distribution of the normalized variance of the resolved streamwise velocity Figure 6. Vertical distribution of the normalized variance of the resolved streamwise velocity
from simulations using the SG surface model over surfaces with four different aerodynamic from simulations using the shifted SG surface model over surfaces with four different aero-

roughness lengths z,. The height z is normalized with the boundary-layer depth H.

dynamic roughness lengths z,. The dashed line corresponds to the MKP model and a surface
roughness zo,=0.1 m. The height z is normalized with the boundary-layer depth H.

From Stoll, Porte-Agel, BLM, 2006
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Figure 4. Non-dimensional gradient of the mean streamwise velocity ® = 1‘7:’{7” from simu-
lations that use the local SG surface model over surfaces with four different aerodynamic
roughness lengths z,. The height z is normalized with the boundary-layer depth H. The
dotted line corresponds to the classical log-law (expected to hold on the lower 10% of the
domain) with k =0.4.
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Figure 7. Vertical distribution of the normalized variance of the resolved streamwise velocity
from simulations using the local SG surface model over surfaces with four different aerody-
namic roughness lengths z,. The height z is normalized with the boundary-layer depth H.
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Comparing different models a postiori

—‘N —'N
o o
S 00k S 100k
) )
u? uf
107 F 10 F
102 . . L 102 A A L 102 L , L 10 L . L
102 107 10° 10' 102 107 10° 10 102 10" 10° 10! 102 107 10° 10'
ks z ks z ks z ksz

10%

3

—‘N
o
S 10°
N
=
w
107
10 - * + 102 : * 102 . : 10?2 +
102 107 10° 10! 102 10 10° 10! 102 107 10° 10' 102 10 100 10'
kz k z k z

Figure 8. Normalized streamwise velocity spectra at different heights £ = z/H from Figure 9. Normalized streamwise velocity spectra at different heights £ = z/H from
simulations with the shifted SG model over surfaces with different aerodynamic simulations with the local SG model over surfaces with different acrodynamic surface
surface roughness lengths: (a) zo = 0.0001 m, (b) zo = 0.01 m, (c) 2o = 0.1 m and roughness lengths: (a) zo = 0.0001 m, (b) 2z = 0.01 m, (¢) 20 = 0.1 m and (d)
(d) zo = 0.5 m. The thick solid and dashed lines correspond to the first and second zo = 0.5 m. The thick solid and dashed lines correspond to the first and second
levels of computation at £ = 0.009 and & = 0.028, respectively. levels of computation at £ = 0.009 and & = 0.028, respectively.

From Stoll, Porte-Agel, BLM, 2006
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