LES of Turbulent Flows: Lecture 14 (ME EN 7960-008)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2011

Eddy viscosity Models

- **Eddy Viscosity Models:** (Guerts pg 225; Pope pg 587)
 - -In Lecture 8 we said an eddy-viscosity models are of the form:

momentum: $\tau_{ij} = -2\nu_T \tilde{S}_{ij} \end{red} \mbox{filtered strain rate}$ eddy-viscosity

scalars: $q_i = -D_T \frac{\partial \tilde{\theta}}{\partial x_i} \text{ where } D_T = \frac{\nu_T}{Pr_{sgs}} \text{ SGS Prandtl number}$ eddy-diffusivity

- -This is the LES equivalent to 1st order RANS closure (k-theory or gradient transport theory) and is an analogy to molecular viscosity (see Pope Ch. 10 for a review)
- -Turbulent fluxes are assumed to be proportional to the local velocity or scalar gradients
- -In LES this is the assumption that stress is proportional to strain: $\, au_{ij}\sim \hat{S}_{ij}$
- -The SGS eddy-viscosity ν_T must still be parameterized.

Eddy viscosity Models

-Dimensionally =>

$$\nu_T = \left[\frac{L^2}{T}\right]$$

-In almost all SGS eddy-viscosity models $\, \nu_T \sim u^* l^* \,$ velocity scale length scale

- -Different models use different u^* and l
- -Recall from last time, we can interpret the eddy-viscosity as adding to the molecular viscosity so that the (dimensional) viscous term is:

$$\frac{\partial}{\partial x_{i}} \Big[\big(v_{T} + v \big) \tilde{S}_{ij} \Big]$$

What does the model do? We can see it effectively lowers the Reynolds number of the flow and for high Re (when 1/Re=>0), it provides all of the energy dissipation.

Most LES models use a nonlinear eddy viscosity. What happens if we use a constant?

- We effectively run the simulation at a different (lower) Re
- This has implications for DNS. If we try to use DNS at a lower Re to examine phenomena that happens at a higher Re, unless our low-Re is high enough that Re-invariance assumptions apply we can make the analogy between our DNS and an LES with a SGS model that doesn't properly reproduce the flow physics.

Smagorinsky Model

- Smagorinsky model: (Smagorinsky, MWR 1963)
 - -One of the 1st and still most popular ν_T models for LES
 - -Originally developed for general circulation models (large-scale atmospheric), the model did not remove enough energy in this context.
 - -Applied by Deardorff (JFM, 1970) in the 1st LES.
 - -Uses Prandtl's mixing length idea (1925) applied at the SGSs (see Pope Ch. 10 or Stull, 1988 for a full review of mixing length):
- In **Prandtl's mixing length**, for a general scalar quantity q with an assumed linear profile:

- -A turbulent eddy moves a parcel of air by an amount z 'towards a level z where we have no mixing or other change
- -q' will differ from the surrounding by: $q' = -\left(\frac{\partial \langle q \rangle}{\partial z}\right)z'$
- -ie it will change proportional to its local gradient
- -Similarly, if velocity also has a linear profile:

$$u' = -\left(\frac{\partial \langle u \rangle}{\partial z}\right) z'$$

Smagorinsky Model

- -To move up a distance z' our air parcel must have some vertical velocity w'
- -If turbulence is such that $w' \sim u'$ then w' = Cu' and we have 2 cases:

$$\frac{\partial u}{\partial z} > 0 \Longrightarrow w' = -Cu'$$

$$\frac{\partial u}{\partial z} < 0 \Rightarrow w' = Cu'$$
 -Combining these we get that:
$$w' = C \left| \frac{\partial \langle u \rangle}{\partial z} \right| z'$$

$$w' = C \left| \frac{\partial \langle u \rangle}{\partial z} \right| z'$$

-We q ' and w ' and now we can form a kinematic flux (conc. * velocity) by multiplying the two together:

 $\langle q'w' \rangle = -C \langle (z')^2 \rangle \left| \frac{\partial \langle u \rangle}{\partial z} \right| \frac{\partial \langle q \rangle}{\partial z}$

-Where $(z')^2$ is the variance a parcel moves and $C(z')^2$ is defined as the mixing length \rightarrow

$$\langle q'w'\rangle = -\ell^2 \left| \frac{\partial \langle u \rangle}{\partial z} \right| \frac{\partial \langle q \rangle}{\partial z}$$

-we can replace q' with any variable in this relationship (e.g. u')

Smagorinsky Model

•Back to Smagorinsky model:

-Use Prandtl's mixing length applied at the SGSs:

$$\nu_T = \left(C_S \Delta\right)^2 |\tilde{S}|$$
 length scale velocity scale

-Where Δ is the grid scale taken as $\Delta=(\Delta_x\Delta_y\Delta_z)^{\frac{1}{3}}$ (Deardorff, 1970 or see Scotti et al., PofF 1993 for a more general description).

 $-|\tilde{S}|=\sqrt{2\tilde{S}_{ij}\tilde{S}_{ij}}$ is the magnitude of the filtered strain rate tensor with units [1/T] and serves as the velocity scale (think $\frac{\partial \langle u \rangle}{\partial z}$ in Prandtl's theory) and $C_S\Delta$ is our length scale (squared for dimensional consistency).

-The final model is:

$$\tau_{ij} - \frac{1}{3}\tau_{kk}\delta_{ij} = -2\left(C_S\Delta\right)^2 |\tilde{S}|\tilde{S}_{ij}|$$

-To close the model we need a value of C_s (usually called the Smagorinsky or Smagorinsky-Lilly coefficient)

Lilly's Determination of C_s

- Lilly proposed a method to determine C_s (IBM Symposium, 1967, see Pope page 587)
- Assume we have a high-Re flow $=> \Delta$ can be taken to be in the inertial subrange of turbulence.
- The mean energy transfer across Δ must be balanced by viscous dissipation, on average (note for Δ in the inertial subrange this is not an assumption).

$$\epsilon = \langle \Pi \rangle$$
 recall: $\Pi = -\tau_{ij} \tilde{S}_{ij}$

- -Using an eddy-viscosity model $u_T \Rightarrow \Pi = 2\nu_T \tilde{S}_{ij} \tilde{S}_{ij} = \nu_T |\tilde{S}|^2$
- -If we use the Smagorinsky model: $\,
 u_T = \left(C_S \Delta \right)^2 | ilde{S}| \,$

$$\Rightarrow \qquad \Pi = \left(C_S \Delta \right)^2 |\tilde{S}|^3$$

-The square of $|\tilde{S}|$ can be written as (see Pope pg 579 for details):

$$|\tilde{S}|^2 = 2 \int_0^\infty k^2 \hat{G}(k)^2 E(k) dk$$
 energy spectrum filter transfer function

- -Recall, for a Kolmogorov spectrum in the inertial subrange $E(k) \sim C_k \epsilon^{2/3} k^{-5/3}$
- -We can use this in our integral to obtain (see Pope pg. 579): $|\tilde{S}|^2 \approx a_f C_k \epsilon^{2/3} \Delta^{-4/3}$

Lilly's Determination of C_s

- We can rearrange $|\tilde{S}|^2 \approx a_f C_k \epsilon^{2/3} \Delta^{-4/3}$ to get: $\epsilon = \left\lceil \frac{\langle |\tilde{S}|^2 \rangle}{a_f C_k \Delta^{-4/3}} \right\rceil^{\frac{1}{2}}$ (*)
- ullet Equating viscous dissipation and the average Smagorinsky SGS dissipation ($\epsilon = \langle \Pi
 angle$):

$$\epsilon = \langle \left(C_S \Delta \right)^2 | \tilde{S} |^3 \rangle$$

• if we now combine this equation with (*) above and do some algebra...

$$C_S = \frac{1}{(C_k a_f)^{3/4}} \left(\frac{\langle |\tilde{S}|^3 \rangle}{\langle |\tilde{S}|^2 \rangle^{3/2}} \right)^{-\frac{1}{2}}$$

• we can use the approximation $\langle |\tilde{S}|^3 \rangle \approx \langle |\tilde{S}|^2 \rangle^{3/2}$ and a_f for a cutoff filter (see Pope)

$$\Rightarrow C_S = \frac{1}{\pi} \left(\frac{2}{3C_k} \right)^{3/4}$$

• C_k is the Kolmogorov constant ($C_k \approx 1.5$ -1.6) and with this value we get:

$$C_{\rm S}$$
 ≈ 0.17