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Eddy viscosity Models

» Eddy Viscosity Models: (Guerts pg 225; Pope pg 587)

-In Lecture 8 we said an eddy-viscosity models are of the form:

momentum: Tij = —QZ/TSij <«— filtered strain rate
N eddy-viscosity
o0 % SGS Prandtl number
scalars: qi = — D where D = T
0x; v\ Prsgs

eddy-diffusivity
-This is the LES equivalent to 15t order RANS closure (k-theory or gradient transport
theory) and is an analogy to molecular viscosity (see Pope Ch. 10 for a review)

-Turbulent fluxes are assumed to be proportional to the local velocity or scalar
gradients

-In LES this is the assumption that stress is proportional to strain: 7;; ~ gij

-The SGS eddy-viscosity 7 must still be parameterized.
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Eddy viscosity Models

T
-In almost all SGS eddy-viscosity models ;. ~ 4,**

-Dimensionally => [L2]
vp =

velocity scale/ \Iength scale
-Different models use different ©™ and [*
-Recall from last time, we can interpret the eddy-viscosity as adding to the molecular
viscosity so that the (dimensional) viscous term is:

0 ~

g[(vT + V)Sl]]

What does the model do? We canjsee it effectively lowers the Reynolds number of
the flow and for high Re (when 1/Re=>0), it provides all of the energy dissipation.

Most LES models use a nonlinear eddy viscosity. What happens if we use a constant?

» We effectively run the simulation at a different (lower) Re

* This has implications for DNS. If we try to use DNS at a lower Re to examine
phenomena that happens at a higher Re, unless our low-Re is high enough that
Re-invariance assumptions apply we can make the analogy between our DNS and
an LES with a SGS model that doesn’t properly reproduce the flow physics.
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Smagorinsky Model

*Smagorinsky model: (Smagorinsky, MWR 1963)
-One of the 15t and still most popular v7models for LES

-Originally developed for general circulation models (large-scale atmospheric), the
model did not remove enough energy in this context.

-Applied by Deardorff (JFM, 1970) in the 15t LES.

-Uses Prandtl’s mixing length idea (1925) applied at the SGSs (see Pope Ch. 10 or Stull,
1988 for a full review of mixing length):

* In Prandtl’s mixing length, for a general scalar quantity g with an assumed linear profile:

z -A turbulent eddy moves a parcel of air by an amount z”" towards a

level z where we have no mixing or other change

d
-q’ will differ from the surrounding by: ¢’ =— —aq>)z’
Z

-ie it will change proportional to its local gradient

-Similarly, if velocity also has a linear profile:

u,:_(aéz)jzf
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Smagorinsky Model

-To move up a distance z’ our air parcel must have some vertical velocity w’

-If turbulence is such that w’~ u’ then w’=Cu’ and we have 2 cases:

a—u>0:>w’=—Cu’
0z

0
—u<0:>w’=Cu’
07

-Combining these we get that: w =C

-We ¢’ and w’”and now we can form a kinematic flux (conc. * velocity) by multiplying

the two together: L 2\ | 9(u)| d(q
(gw)=c((z) )| 3 Ha)
dz | 02

-Where (z’)? is the variance a parcel moves and C(z’)? is defined as the mixing length =»

rooN 2a<”> a(‘l)
(g} == dz | 0z

-we can replace ¢’ with any variable in this relationship (e.g. u’)
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Smagorinsky Model

*Back to Smagorinsky model:

-Use Prandtl’s mixing length applied at the SGSs:

~

vp = (CsA)?|S
-~ J\velocity scale

length scale

-Where A is the grid scale taken as A = (AxAyAz)% (Deardorff, 1970 or see Scotti et
al., PofF 1993 for a more general description).

-]gl = 4/ 2§ij§ij is the magnitude of the filtered strain rate tensor with units [1/T] and
serves as the velocity scale (think 2% in Prandtl’s theory) and C's A is our length scale
(squared for dimensional consistency).
-The final model is: 1 o

Tij — ngkdfij = —2 (CsA)Q |S’Sw

-To close the model we need a value of C; (usually called the Smagorinsky or
Smagorinsky-Lilly coefficient)
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Lilly’s Determination of C

* Lilly proposed a method to determine C (IBM Symposium, 1967, see Pope page 587)

* Assume we have a high-Re flow => A can be taken to be in the inertial subrange of
turbulence.

* The mean energy transfer across A must be balanced by viscous dissipation, on average
(note for A in the inertial subrange this is not an assumption) .

e = (II) recall: I = —7;;S;,
-Using an eddy-viscosity model v = 11 = QI/qujjgij = 1/T|§|2

~

-If we use the Smagorinsky model: v = (CsA)?|S]
= 1= (CsA)° |5
-The square of ]§| can be written as (see Pope pg 579 for details):
S| = 2/k2é(k)2E(k)dk
2 1‘ L——— energy spectrum
fi

Iter transfer function

-Recall, for a Kolmogorov spectrum in the inertial subrange E(k) ~ Cre?/3E=2/3

-We can use this in our integral to obtain (see Pope pg. 579): |§|2 ~ aka62/3A_4/3
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Lilly’s Determination of C

N

(IS1*)
akaA—4/3
« Equating viscous dissipation and the average Smagorinsky SGS dissipation (¢ = (II)):

2,813
e = ((CsA)"[S]7)

* We can rearrange|S|? ~ a;Cpe?/ A7/ 3 toget: €= (%)

* if we now combine this equation with (s*)above and do some algebra...

o 15 )
s = Cran <<|§2>3/2)

* we can use the approximation(|S|?) ~ (|S]?)?/% and g, for a cutoff filter (see Pope)

R C_l 9 \3/4
ST T 3C

* C, is the Kolmogorov constant (C, = 1.5-1.6) and with this value we get:

C,=0.17
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