LES of Turbulent Flows: Lecture 10 (ME EN 7960-008)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2011

LES filtered Equations for incompressible flow

•Mass:
$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0$$

•Momentum:
$$\frac{\partial \tilde{u}_i}{\partial t} + \frac{\partial \tilde{u}_i \tilde{u}_j}{\partial x_j} = -\frac{\partial \tilde{p}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \tilde{u}_i}{\partial x_j^2} - \frac{\partial \tau_{ij}}{\partial x_j} + F_i \qquad \textcircled{6}$$

•Scalar:
$$\frac{\partial \tilde{\theta}}{\partial t} + \frac{\partial \tilde{u}_i \tilde{\theta}}{\partial x_i} = \frac{1}{Sc \operatorname{Re}} \frac{\partial^2 \tilde{\theta}}{\partial x_i^2} - \frac{\partial q_i}{\partial x_i} + Q$$

•SFS stress:
$$au_{ij} = \widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j$$

•SFS flux:
$$q_j = \widetilde{u_j heta} - \tilde{u}_j ilde{ heta}$$

- we've talked about variance (or energy) when discussing turbulence and filtering
- when we examined application of the LES filter at scale Δ we looked at the effect of the filter on the distribution of energy with scale.
- A natural way to extend our examination of scale separation and energy is to look at the evolution of the <u>filtered variance or kinetic energy</u>

The filtered kinetic energy equation

- <u>filtered kinetic energy equation</u> for incompressible flow
 - -We can define the total filtered kinetic energy by: $\tilde{E}=\frac{1}{2}\widetilde{u_iu_i}$
 - -We can decompose this in the standard way by:

$$\tilde{E} = \tilde{E}_f + k_r$$
Resolved SFS
Kinetic energy Kinetic energy

-The SFS kinetic energy (or residual kinetic energy) can be defined as:

$$k_r = \frac{1}{2} \left(\widetilde{u_i u_i} - \widetilde{u}_i \widetilde{u}_i \right)$$

(see Pope pg. 585 or Piomelli et al., Phys Fluids A, 1991)

-The resolved (filtered) kinetic energy is then given by:

$$\tilde{E}_f = \frac{1}{2} \tilde{u}_i \tilde{u}_i$$

The filtered kinetic energy equation

• We can develop an equation for \tilde{E}_f by multiplying equation \bigcirc on page 2 by \tilde{u}_i :

$$\widetilde{u}_{i} \frac{\partial \widetilde{u}_{i}}{\partial t} + \widetilde{u}_{i} \widetilde{u}_{j} \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} = -\widetilde{u}_{i} \frac{1}{\rho} \frac{\partial \widetilde{P}}{\partial x_{i}} + v \widetilde{u}_{i} \frac{\partial^{2} \widetilde{u}_{i}}{\partial x_{j}^{2}} - \widetilde{u}_{i} \frac{\partial \tau_{ij}}{\partial x_{j}}$$

Applying the product rule to the terms in the squares:

$$\frac{\partial \tilde{u}_{i}\tilde{u}_{i}}{\partial t} = \tilde{u}_{i}\frac{\partial \tilde{u}_{i}}{\partial t} + \tilde{u}_{i}\frac{\partial \tilde{u}_{i}}{\partial t} \Rightarrow \tilde{u}_{i}\frac{\partial \tilde{u}_{i}}{\partial t} = \frac{1}{2}\frac{\partial \tilde{u}_{i}\tilde{u}_{i}}{\partial t}$$

$$\tilde{u}_{j}\frac{\partial \tilde{u}_{i}\tilde{u}_{i}}{\partial x_{j}} = \tilde{u}_{i}\tilde{u}_{j}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} + \tilde{u}_{i}\tilde{u}_{j}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} \Rightarrow \tilde{u}_{i}\tilde{u}_{j}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} = \frac{1}{2}\tilde{u}_{j}\frac{\partial \tilde{u}_{i}\tilde{u}_{i}}{\partial x_{j}}$$

$$\frac{\partial \tilde{P}\tilde{u}_{i}}{\partial x_{i}} = \tilde{P}\frac{\partial \tilde{u}_{i}}{\partial x_{i}} + \tilde{u}_{i}\frac{\partial \tilde{P}}{\partial x_{i}} \Rightarrow \tilde{u}_{i}\frac{\partial \tilde{P}}{\partial x_{i}} = \frac{\partial \tilde{P}\tilde{u}_{i}}{\partial x_{i}}$$

$$\tilde{u}_{i}\frac{\partial \tilde{P}}{\partial x_{i}} = \frac{\partial \tilde{P}\tilde{u}_{i}}{\partial x_{i}}$$

• Using our definition of \tilde{E}_f :

$$\frac{\partial \tilde{E}_{f}}{\partial t} + \tilde{u}_{j} \frac{\partial \tilde{E}_{f}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \tilde{u}_{i} \tilde{P}}{\partial x_{i}} + v \tilde{u}_{i} \frac{\partial^{2} \tilde{u}_{i}}{\partial x_{j}^{2}} - \tilde{u}_{i} \frac{\partial \tau_{ij}}{\partial x_{j}}$$

The filtered kinetic energy equation

• term △:

$$\frac{\partial^{2} \tilde{u}_{i} \tilde{u}_{i}}{\partial x_{j}^{2}} = \frac{\partial}{\partial x_{j}} \left[\frac{\partial}{\partial x_{j}} \tilde{u}_{i} \tilde{u}_{i} \right] = \frac{\partial}{\partial x_{j}} \left[2\tilde{u}_{i} \frac{\partial \tilde{u}_{i}}{\partial x_{j}} \right] = 2 \frac{\partial \tilde{u}_{i}}{\partial x_{j}} \frac{\partial \tilde{u}_{i}}{\partial x_{j}} + 2\tilde{u}_{i} \frac{\partial^{2} \tilde{u}_{i}}{\partial x_{j}^{2}}$$
Looks just like \triangle

 \rightarrow (without ν) • using squared equation and divide by 2 and multiplying by v:

$$v\tilde{u}_{i}\frac{\partial^{2}\tilde{u}_{i}}{\partial x_{j}^{2}} = v\frac{\partial}{\partial x_{j}}\left[\tilde{u}_{i}\frac{\partial\tilde{u}_{i}}{\partial x_{j}}\right] - v\frac{\partial\tilde{u}_{i}}{\partial x_{j}}\frac{\partial\tilde{u}_{i}}{\partial x_{j}} \quad \text{recall that} \quad \tilde{S}_{ij} = \frac{1}{2}\left(\frac{\partial\tilde{u}_{i}}{\partial x_{j}} + \frac{\partial\tilde{u}_{j}}{\partial x_{i}}\right)$$

• term ∇ :

Uses symmetry of
$$\tilde{S}_{ij}$$
 and $\longrightarrow 2v\frac{\partial}{\partial x_{j}}\left[\tilde{u}_{i}\tilde{S}_{ij}\right] - \underbrace{2v\tilde{S}_{ij}\tilde{S}_{ij}}_{\mathcal{E}_{f}}$

$$\frac{\partial \tilde{u}_{i}\tau_{ij}}{\partial x_{j}} = \tilde{u}_{i}\frac{\partial \tau_{ij}}{\partial x_{j}} + \tau_{ij}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} \Rightarrow \tilde{u}_{i}\frac{\partial \tau_{ij}}{\partial x_{j}} = \frac{\partial \tilde{u}_{i}\tau_{ij}}{\partial x_{j}} - \tau_{ij}\frac{\partial \tilde{u}_{i}}{\partial x_{j}}$$

$$\tau_{::}\tilde{S}_{::} =$$

• Combining everything back together:
$$\frac{\partial \tilde{E}_f}{\partial t} + \tilde{u}_j \frac{\partial \tilde{E}_f}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{u}_i \tilde{p}}{\partial x_j} - \frac{\partial \tilde{u}_i \tau_{ij}}{\partial x_j} - 2v \frac{\partial \tilde{u}_i \tilde{S}_{ij}}{\partial x_j} - \varepsilon_f$$
 "storage" of \tilde{E}_f advection pressure transport of transport dissipation of \tilde{E}_f transport SFS stress τ_{ij} of viscous by viscous stress stress

dissipation

stress stress

Transfer of energy between resolved and SFSs

• The **SFS dissipation** Π in the resolved kinetic energy equation is a sink of resolved kinetic energy (it is a source in the k_r equation) and represents the transfer of energy from resolved SFSs. It is equal to:

$$\Pi = -\tau_{ij}\tilde{S}_{ij}$$

• It is referred to as the SFS dissipation as an analogy to viscous dissipation (and in the inertial subrange Π = viscous dissipation).

- On average Π drains energy (transfers energy down to smaller scale) from the resolved scales.
- Instantaneously (locally) Π can be positive **or** negative.
 - -When ∏ is negative (transfer from SFS→Resolved scales) it is typically termed backscatter
 - -When ∏ is positive it is sometimes referred to as forward scatter.

Transfer of energy between resolved and SFSs

• Its informative to compare our resolved kinetic energy equation to the mean kinetic energy equation (derived in a similar manner, see Pope pg. 124; Stull 1988 ch. 5)

shear production
$$=\langle u'_{i}u'_{j}\rangle\frac{\partial\langle u_{i}\rangle}{\partial x_{j}}$$

$$\frac{\partial\langle E\rangle}{\partial t} + \langle u_{i}\rangle\frac{\partial\langle E\rangle}{\partial x_{j}} + \frac{1}{\rho}\frac{\partial\langle u_{i}\rangle\langle P\rangle}{\partial x_{j}} - \frac{\partial}{\partial x_{j}}2v\langle u_{i}\rangle\langle S_{ij}\rangle = -P - \langle \varepsilon\rangle$$
mean dissipation $= 2v\langle S_{ij}\rangle\langle S_{ij}\rangle$

• For high-Re flow, with our filter in the inertial subrange:

$$\langle \tilde{E}_f \rangle = \langle E \rangle$$

- The dominant sink for $\langle \tilde{E}_f \rangle$ is Π while for $\langle E \rangle$ it is $\langle \varepsilon \rangle$ (rate of dissipation of energy). For high-Re flow we therefore have:

$$\langle \Pi \rangle \approx \langle \varepsilon \rangle$$

- Recall from K41, $\langle \varepsilon \rangle$ is proportional to the transfer of energy in the inertial subrange $\rightarrow \Pi$ will have a strong impact on energy transfer and the shape of the energy spectrum in LES.
- Calculating the correct average Π is another necessary (but not sufficient) condition for an LES SFS model (to go with our N-S invariance properties from Lecture 7).