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LES filtered Equations for incompressible flow
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*SFS stress:  Tij — Wiy — U;Uy

*SFS flux: q; = u;0 — ﬂjé

» we've talked about variance (or energy) when discussing turbulence and filtering

» when we examined application of the LES filter at scale A we looked at the effect
of the filter on the distribution of energy with scale.

A natural way to extend our examination of scale separation and energy is to look
at the evolution of the filtered variance or kinetic energy

UTHE UNIVERSITY OF UTAH=




The filtered kinetic energy equation

* filtered kinetic energy equation for incompressible flow

~ |
-We can define the total filtered kinetic energy by: ' — §uzuz

-We can decompose this in the standard way by:

E=E, +k,
Resolved € \y SFS
Kinetic energy Kinetic energy

-The SFS kinetic energy (or residual kinetic energy) can be defined as:
k, = %(@/z - ﬂiﬁi)
(see Pope pg. 585 or Piomelli et al., Phys Fluids A, 1991)

-The resolved (filtered) kinetic energy is then given by:

E, = i,
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The filtered kinetic energy equation

* We can develop an equation forEf by multiplying equation®on page 2 by i :
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* Applying the product rule to the terms in the square%
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The filtered kinetic energy equation

Product rule Product rule
eterm A\ : r P
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* using|squared equation and divide by 2 and multiplying by v: L> (Without V)
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* Combining everything back together: )
aEfW.aEf loap duT, au,.Sl.j_g @
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stress stress

UTHE UNIVERSITY OF UTAH=




Transfer of energy between resolved and SFSs

* The SFS dissipationII in the resolved kinetic energy equation is a sink of resolved kinetic

energy (it is a source in the k equation) and represents the transfer of energy from
resolved SFSs. It is equal to:

~

II = _Tz'j Sij

* It is referred to as the SFS dissipation as an analogy to viscous dissipation (and in the
inertial subrange II = viscous dissipation). | Spectral Cutoff/j"tef

. Op!
* On average II drains energy (transfers energy 107"} f“/a,o, f
down to smaller scale) from the resolved scales. ‘ \Scazfg

1074 sr

* Instantaneously (locally) IT can be positive R ba% /
or negative. gl R //

-When I is negative (transfer from

SFS=>»Resolved scales) it is typically © ~-DNS //
termed backscatter B /

. L. L. . 10 K=(K2+ k2+kEQ/2 /A
-WhenTIis positive it is sometimes . e

| |
referred to as forward scatter. Resolved scales  SGS scales

UTHE UNIVERSITY OF UTAH=



Transfer of energy between resolved and SFSs

* Its informative to compare our resolved kinetic energy equation to the mean kinetic
energy equation (derived in a similar manner, see Pope pg. 124; Stull 1988 ch. 5)

|—> shear production = <ul’u;>
HE) 13(u)P) 3
—_ , — — 2 MS.,)=—P—
By +(u;) W b ax = v(ul)<SlJ> (e)
I—)mean dissipation = 2v<Sl.j><Sij>

J J

* For high-Re flow, with our filter in the inertial subrange:

<Ef>:<E>
- The dominant sink for<Ef> is [T while for(E) it is (¢) (rate of dissipation of energy).
For high-Re flow we therefore have:
(IT) = (¢)
- Recall from K41, (¢) is proportional to the transfer of energy in the inertial subrange

=>I1 will have a strong impact on energy transfer and the shape of the energy
spectrum in LES.

- Calculating the correct average Il is another necessary (but not sufficient) condition
for an LES SFS model (to go with our N-S invariance properties from Lecture 7).
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