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Kolmogorov’s Similarity hypothesis (1941)

Kolmogorov’s 15t Hypothesis:
* smallest scales receive energy at a rate proportional to the dissipation of
energy rate.

* motion of the very smallest scales in a flow depend only on:

2
a) rate of energy transfer from small scales: ¢ [ﬁ]

2
b) kinematic viscosity: v [?]

With this he defined the Kolmogorov scales (dissipation scales):
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€

1

. U\ 2
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* velocity scale: v = (ve)

Re based on the Kolmolgorov scales => Re=1
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Kolmogorov’s Similarity hypothesis (1941)

From our scales we can also form the ratios of the largest to smallest scales in
the flow (using ¢,, U,, t,). 3

Note: dissipation at large scales => € ~ 7
(0}

* length scale: N . 1 3/4 3/4
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* velocity scale:
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e time scale:

=2 |1 o Re1/2
v to

For very high-Re flows (e.g., Atmosphere) we have a range of scales that is
small compared to /, but large compared to7n. As Re goes up,n//¢, goes
down and we have a larger separation between large and small scales.
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Kolmogorov’s Similarity hypothesis (1941)

Kolmolgorov’s 2" Hypothesis:

In Turbulent flow, a range of scales exists at very high Re where statistics of
motion in a range /¢ (for ¢, >> ¢ >> 1) have a universal form that is

determined only by € (dissipation) and independent of v (kinematic viscosity).
* Kolmogorov formed his hypothesis and examined it by looking at the pdf of
velocity increments Au.

A
pdf(4u) The moments of this pdf are the structure functions
of different order (e.g., 29, 31, 4t etc. )

R

variance skewness kurtosis

Au

* Another way to look at this (equivalent to structure functions) is to

examine what it means for E(k)
* Recall E(k)dk = t.k.e. contained between k and k + dk
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Kolmogorov’s Similarity Hypothesis (1941)

* What are the implications of Kolmolgorov’s hypothesis for E(k)?
K41l = E(k) = f(k,¢)
By dimensional analysis we can find that:
E(k) = ¢, ?/Bk=2/3
* This expression is valid for the range of length scales ¢ where ¢/, >> ¢ >>n
and is usually called the inertial subrange of turbulence.

* graphically: A
log(E(k))
Energy
containing range |
(Production Dissipation range
subrange) i Inertial (viscous subrange)
i subrange
: ’ —
/'kfvl/lo log(K) k~1/l]\
Integral scale Kolmolgorov scale
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Degrees of freedom and numerical simulations

* We now have a description of turbulence and the range of energy containing scales
(the dynamic range) in turbulence

* In CFD we need to discretize the equations of motion (see below) using either
difference approximations (finite differences) or as a finite number of basis functions
(e.g., Fourier transforms)

* To capture all the dynamics (degrees of freedom) of a turbulent flow we need to
have a grid fine enough to capture the smallest and largest motions (7 and /)

* From K41 we know EE ~ Re~3/* and we have a continuous range of scales between
nand ¢, ©

o . N : :
* We need ? ~ Re*/*in each direction. Turbulence is 3D => we need N~Re%* points.
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Degrees of freedom and numerical simulations

* When will we be able to directly simulate all the scales of motion in a turbulent

flow? (Voller and Porté-Agel, 2002, see handouts for the full paper)

In the mid 1960s Gordon Moore, the co-founder of Intel, made the observation that
computer power, P, measured by the number of transistors that could be fit onto a chip,
doubled once every 1.5 years [1]. This law, which has performed extremely well over the

proceeding 30 or so years, can be stated in mathematical terms as
P = A20.6667Y (1)

where A is the computer power at the reference year Y =0.

TABLE 11
Expected Year (£5) That the Given Direct Simulation Will Be Possible

100000000 If Grid Size Increases Are Bound by Eq. (2)
10000000 - A —10000 227 No Domain Resolution Grid points Expected year
- D" 0 Simulation length scale length scale required (&5 years)

cn 1000000 - Q 0® 2-D casting 0.Im | pm (dendrite tip) 10 2015
€ 2-D casting I m 1 m (dendrite tip) 10" 2025
E 100000 - 3D casting 01 Ly (dendsite tin) L1015 2040
] Boundary layer 100 m I mm 10» 2040
('5 0 Casting [2-10] 2-D casting 0.T'm I'nm (lattice space) 10 2045
10000 1 ‘D [ ] _ 3-D casting I m 1 wm (dendrite tip) 10" 2055
H W Modeling [11,12] 2-D casting I m | nm (lattice space) 10'® 2055
1000 /-~ Boundary layer 1 km I mm 10" 2055
A =100 2273 © E:%“;‘gary Layers Boundary layer 10 km | mm 10% 2070
100 , | ‘ [1316] 2 3-D casting 0.I'm I'nm (lattice space) 10* 2085
0 5 10 15 20 3-D casting Im 1 nm (lattice space) 10%7 2100

FIG. 1. Log of three largest grid sizes from each volume plotted against year.

Time Y
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Equations of Motion

* Turbulent flow (and fluid dynamics in general) can be mathematically described by the
Navier-Stokes equations (see Bachelor, 1967 for a derivation of equations/Pope Ch 2)

* The primary goal of CFD (and LES) is to solve the discretized equations of motion.
* we use the continuum hypothesis (e.g.,  >> mean free path of molecules) so that
= u; = u;(z;,t) and p = p(x;,1)

* Conservation of Mass:

d_m\ ~0 Using Reynolds Transport Theorem
dt ), B (RTT, see any fluids textbook)
dm ) 0 I
= =—de‘v’+_[pV-dA:O = Integral form
dt at cv (6N

sys

Using Gauss’s theorem and shrinking the control
volume to an infinitesimal size:

4+ —( pul.) = (0 = differential form
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Equations of Motion

Conservation of Momentum: (Newton’s 2" law)

) Using RTT =
sys

3 J pvdy + JVdeA = J T -ndA+ J pbdV = integral form
CcS cv

| |
shear stress body forces

* The shear stress tensor depends on molecular processes. For a Newtonian fluid =

T=—(P+%,LLV-\7)I+2/,LS

o ~ou; ). :
WhereS = l(VV+VVT) or in index notation S, = % ou, + 2% lis the deformation (rate
2 ’ dx; ox,

1

of strain) tensor and | is the unit tensor (or identity matrix)
* The equivalent index-notation (differential) form of the momentum equation is:

Apu)  Olpua;) YN AN
ot * ox,  ox zuS’j_Auéijax,- —g+pgi

J J i
where the stress has been split into shear (viscous) and normal (pressure) components.
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Conservation of Energy

Conservation of Energy: (1%t law of Thermodynamics)

: : dE
For a system conservation of energyis: Q—-W = or: (in-out) + produced = stored

dt s
- (in-out) is the convective flux of energy
-Production is the heat conducted in + the work done on the volume (e.g.,

thermal flux and shear stress)
« if we use e = ¢, T (specific internal energy)
* and define g, = —k—— as the thermal conductive flux where ¢, is the specific heat and

ox,
l
T is temperature. We can derive the following differential form for energy

J dq, , 9
at(pE +—[u (P+E)]= p‘”a_xfa_x[ (Z,uSU /,ucSl]a ﬂ

Where the total energyis: E=¢+ 12”%
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