LES of Turbulent Flows: Lecture 5 (ME EN 7960-008)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2011

Sampling Theorem

<u>Band-Limited function</u>: a function where $\hat{f}_k = 0$ for $|k| > k_c$

Theorem: If f(x) is band limited, i.e., $\hat{f}_k = 0$ for $|k| > k_c$, then f(x) is completely represented by its values on a discrete grid, $x_n = n\pi/k_c$ where n is an integer $\infty < n < \infty$) and k_c is called the Nyquist frequency.

Implication:

- If we have $x_j = j \pi / k_c = jh \Rightarrow h = \pi / k_c$ with a domain of 2π : $h = 2\pi / N = \pi / k_c \Rightarrow k_c = N / 2$
- If the number of points is $\geq 2kc$ then the discrete Fourier Transform=exact solution e.g., for f(x) = cos(6x) we need $N \geq 12$ points to represent the function exactly

Sampling Theorem

• What if f(x) is not band-limited?

- or f(x) is band limited but sampled at a rate $< k_c$, for example f(x) = cos(6x) with 8 points.
- <u>Result</u>: Aliasing → contamination of resolved energy by energy outside of the resolved scales.

Aliasing

• Consider: $e^{ik_1x_j}$ and $e^{ik_2x_j}$ and let $k_1 = k_2 + 2mk_c$

where k_c = Nyquist frequency, $m = \pm$ any integer value and $x_j = j \frac{\pi}{k_c}$

$$e^{ik_1x_j} = e^{i(k_2 + 2mk_c)x_j}$$

$$= e^{ik_2x_j}e^{2mk_cx_j} = e^{ik_2x_j}e^{2mk_cj\pi/k_c}$$

$$= e^{ik_2x_j}e^{i2\pi mj}$$
=1 (integer function of 2π)

 $e^{ik_1x_j} = e^{ik_2x_j} \implies$ result is that we can't tell the difference between k_2 and

 $k_1 = k_2 + 2mk_c$ on a discrete grid. k_1 is aliased onto k_2

Aliasing Example

Consider a function: e.g., $f(x) = \cos(x) + \frac{1}{2}\cos(3x) + \frac{1}{4}\cos(6x)$

Aliasing
$$\Rightarrow k_1 = k_2 + 2mk_c = k_2 + 8m \Rightarrow -6$$
 gets aliased to 2 and if $m = -1 \Rightarrow k_1 = k_2 - 8 \Rightarrow 6$ gets aliased to -2

For more on Fourier Transforms see Pope Ch. 6, online handout from Stull or Press et al., Ch 12-13.

Turbulent Flow Properties

• Why study turbulence? Most real flows in engineering applications are turbulent. **Properties of Turbulent Flows:**

1. <u>Unsteadiness:</u>

2. <u>3D:</u>

contains random-like variability in space

 χ_i (all 3 directions)

3. High vorticity:

Vortex stretching mechanism to increase the intensity of turbulence (we can measure the intensity of turbulence with the turbulence intensity

$$=>\frac{\sigma_u}{\langle u\rangle} \) \qquad \text{Vorticity:} \qquad \omega=\vec{\bigtriangledown}\times\vec{u} \quad \text{or} \quad :\epsilon_{ijk}\frac{\partial}{\partial x_i}u_j\hat{e}_k$$

Turbulent Flow Properties (cont.)

Properties of Turbulent Flows:

4. Mixing effect:

Turbulence mixes quantities with the result that gradients are reduced (e.g. pollutants, chemicals, velocity components, etc.). This lowers the concentration of harmful scalars but increases drag.

5. A continuous spectrum (range) of scales:

Turbulence Scales

- The largest scale is referred to as the Integral scale (I_o). It is on the order of the autocorrelation length.
- In a boundary layer, the integral scale is comparable to the boundary layer height.

