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Fourier Transforms

Fourier Transforms are a common tool in fluid dynamics (see Pope, Appendix D-G,
Stull handouts online)

Some uses:

e Analysis of turbulent flow
e Numerical simulations of N-S equations
e Analysis of numerical schemes (modified wavenumbers)
e consider a periodic function f{x) (could also be f{#)) on a domain of length 2m
e The Fourier representation of this function (or a general signal) is:
k=00
T ikx
f(0= 25" G
k=—co
- where k is the wavenumber (frequency if f{¢))

- f, are the Fourier coefficients which in general are complex
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Fourier Transforms

Oifk#k
2witk =k

- a big advantage of orthogonality is independence between Fourier modes

2
- answer: orthogonality jzei(k_k')xdx =

e why pick e** ?
0 {

- e is independent of e?* just like we have with Cartesian coordinates
where i,j,k are all independent of each other.
e what are we actually doing?
e recall from Euler’s formula that e =cos(x) —isin(x)

e the Fourier transform decomposes a signal (space or time) into sine and cosine
wave components of different amplitudes and wave numbers (or frequencies).
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Fourier Transforms

e Fourier Transform example (from Stull, 88 see example: FourierTransDemo.m)

wave forms for k=8
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Fourier Transforms

e The Fourier representation given by @ is a representation of a series as a
function of sine and cosine waves. It takes f(x) and transforms it into wave space

e Fourier Transform pair: consider a periodic function on a domain of 2n

2
=F{f(x)} = 21 jf f(x)e ™ dx — |forward transform
T,

f(x)=F {]Afk} = Z]A”keik" — |backwards transform

k=—oo

e The forwards transform moves us into Fourier (or wave) space and the backwards
transform moves us from wave space back to real space.

e An alternative form of the Fourier transform @(using Euler’s) is:
k:oo

f(x)=a,+ X a, cos(kx) —b, sin(kx)

k=1
Where a, and b, are now the real and imaginary components of f,, respectively
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Locality in real and wave space

It is important to note that something that is non local in physical (real) space can
be very local in Fourier space and something that is local in physical space can be
non local in Fourier space.

Example 1: , 14+ cos?x

f(x)=cos” x = 5 (a wave, very non local in physical space)
Fourier modes are : Ji 4
a, =1/2,a, =1/2 all other a,,b, =0 7 U
< | >
Example 2: 1 2 k
f (x) = 5( ) the Dirac delta function (very non local in physical space)
f 5(x)e ™ dx 1/2<[ |
recall by def1n1t10n J O(x-a)f(x)dx=f(a) =TT
~ 1 Ll
:>I =1 for any value k = f, =— < 1 2 ,:

27
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Fourier Transform Properties

1. If f(x)is real then:

N /\>l<

fi =J, (Complex conjugate)

2. Parseval’s Theorem:

1 2 ) k=c><>A .,
e NOIRCTED WA

k=—o0

3. The Fourier representation is the best possible representation for f(x) in the
sense that the error:

=]

0

N 2
flx— zcke’kx dx is minimum when ¢, = f,
k=—N
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Discrete Fourier Transform

* Consider the periodic function f; on the domain 0 <x <L

_+ —t }'"“““"““'} with x;=jh and i = L/N

Periodicity implies that f,=f,

e Discrete Fourier Representation:
Ns-1
¢ ik :
fi= 2 f.e — backwards (inverse) transform

e we have: known:j? at N points

unknown: 7, at k values (N of them)
e Using discrete orthogonality

Z,f “; = forward transform
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Discrete Fourier Transform

* Discrete Fourier Transform (DFT) example and more explanation found in
handouts section of website under Stull_DFT.pdf or Pope appendix F and in
example: FourierTransDemo.m

* |Implementation of DFT by brute force =» O(N?) operations
* In practice we almost always use a Fast Fourier Transform (FFT) =» O(N*log,N)

* Almost all FFT routines (e.g., Matlab, FFTW, Intel, Numerical Recipes, etc.) save
their data with the following format:

positonsx, X, X, X; Xys Xngoy Xngio An-1 Xy
wavenumbers k=0 k=1 k=2 _1 k=%Y% I_ k=-2 k=-1

k=Y—1 Tk=—%+1

Nyquist

UTHE UNIVERSITY OF UTAH=




Fourier Transform Applications

Autocorrelation:

 We can use the discrete Fourier Transform to speed up the autocorrelation

calculation (or in general any cross-correlation with a lag).
N-1

-Discretely (5,) = Zf(xj)f(xj + sl)this is O(N?) operations

Jj=0
correlation with itself

-if we express Rﬂas a Fourier series

- iks, - ~|?
R,(s)=D R, = R,(0)=) R, and we can show that R, (0)= D N|f,
k k S
-how can we interpret this?? magnitude ofthe

-In physical space

N-1 N-1 NA—1 5
— 2 s : 2 _ 7 total contribution
Rﬁ” (O) - 2 f] (i.e. the mean variance) = zfj - 2 N‘fk }to the variance
j=0 j=0 k==

|energy spectral density|
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Fourier Transform Applications

Energy Spectrum: (power spectrum, energy spectral density)

the autocorrelation function form a Fourier
Transform pair (see Pope for details)

If we look at specific k£ values from our autocorrelation function we have:

The square of the Fourier coefficients is
the contribution to the variance by
fluctuations of scale & (wavenumber or
equivalently frequency

where E(k) is the energy spectral density

Typically (when written as) E(k) we mean the contribution to the turbulent kinetic
energy (tke) = “2(#’+v’+w?) and we would say that E(k) is the contribution to tke
for motions of the scale (or size) k. For a single velocity component in one
direction we would write £ (k).

E(k)) Example energy spectrum
This means that the energy spectrum and
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