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Statistical Conditions for a SGS model

* What conditions should a SGS model satisfy?

-Specifically we are interested in answering the question what statistical properties should
t;and ;7% share?

-We know a “good” model should adhere to our equations of motion:
* Invariance to translation, rotation, and reflection (in the absence of boundaries)
* Hopefully, invariance to Re
* Ideally, invariant to A

-To get more specific than this, we need to talk about statistics of SGS models (Meneveau,

Physics of Fluids, 1994).
* To obtain correct 15t and 2" order moments of our resolved field, our model must

at least be able to produce average modeled stresses that match the real stresses

everywhere.
* This doesn’t guarantee that our 2" order moments are correct it is only a

necessary condition.

* To produce 2"Y order moments, we need to have our model reproduce 2"4 and 3
order SGS stats including stresses and correlations (e.g. stresses with velocity or
gradients). This includes matching <> everywhere.

* For even higher order moments we need to match higher order SGS stats...
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Computing SGS quantities

* Procedurally, How do we compute these SGS stats from data (DNS or Experiments)?
Here is a “quick” list, also see the handout Project_apriori_study.pdf on the web.

-Select your data (after quality control) and identify missing velocity or gradient terms

-Separate the data into resolved and SGS scales by calculating u; and % with an
appropriate LES filter (see lecture 4 for the most common examples).

*At this point, a decision must be made: to down-sample or not (see Liu et al.,JFM 1994)
-Down-sampling means removing points from the field that are separated
(spatially) by < our filter scale A (denoted by the ~). Effectively this means we
keep less points than we started with (e.g. from 1283 to 323) after filtering.
-Pros: we get a “true” representation of the effect of gradient estimates on our
SGS models and avoid enhanced correlations due to filter overlap.

-Cons: we lose data points (important if we have limited data) and we now need
to consider the above gradient estimation errors!

— - - 1 L 0
-Calculate local values of all the components of ’rz% = UjU; — U;Uj andS;; = 3 (gg + ZZ”)
you can (you may need approximations here based on your data!) ! ’

-For some models you may need to calculate other parameters (e.g., mixed and nonlinear
models) but the general procedure is the same
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Computing SGS quantities

-Homework #2 implemented different types of filters

-Once you have these basic quantities calculated you can calculate model values T,L-?’M
and statistics of the actual (from data) and modeled SGS stresses including average values,

correlation coefficients and variances (see project handout).

-We can also calculate other SGS statistics like (IT®) = —(7’@5’@ and(IT~M) or any
model coefficients of interest (see handout for an example).

* The following pages give some examples of SGS statistics and model coefficients
calculated form various references (discussed in class).
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SGS Dissipation

* SGS Energy transfer from experiments in the Utah desert (Carper and Porté-Agel , 2004)
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* SGS Energy transfer from DNS of turbulent channel flow Re=3300 (U ) (Piomelli et al., 1991)

11 = —T.zjjSij

Decreasing filter size A

SGS Dissipation
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SGS Model Correlation Coefficients

1.0 4 ]

. . . ] —Gana
Correlation coefficients from Clark et al, (1979) for 09 ] ____..,-—-/'/"'/P(P) by SSM [
different models 05 ] ** R

] oo P(P) by SM
0.7 4 5O og
Evaluation of subgrid-scale models 13 06 4 s
aos]d
Correlation Model constant b
— A — p A — 04 4 b
Torm Model A A FED 2 o3 ] ESesssnsas—t—sa POYM .
Tii Smagorinsky 0-366 0277 0-270 0-247 ] p,; by SM ij
(tensor) Vorticity 0344  0-260 0204  0-275 02 ) FIVIIAV Y9y~ —y— vt v
Turbulent kinetic energy 0-363 0-303 0-196 0-175 0.1 T T T T
Eddy viscosity 0:352 0-295 10 20 30 40
ory Smagorinsky 0425 0346 0240  0-264 (a) k, =m/A
oz, Vorticity 0-408 0327 0220  0-247
{vector) Turbulent kinetic energy 0434 0-362 0-138 0-155 . s s
Eddy viscosity 0426 0-356 Correlation coefficients from Lu et al (2007)
u T8 Smagorinsky 0710 0-580  0-186 0171 for Smagorinsky and Similarity models
oz, Vorticity 0-700 0-582 0-202 0-191
(scalar) Turbulent kinetic energy 0-723 0-606 0-085 0-095 0.3653
Eddy ViSGOSity 0-716 0-605 .0,2923

TABLE 2. Summary of correlations between exact subgrid-scale
Reynolds stresses and models.

_2VT'§z'j > ]
(CSA)% 1S
(C1A) kL2 8-

*Eddy-viscosity- Tij

*Smagorinsky- T

*Kinetic energy- v

Measured

-3 -2 -1 0

l0.2203

0.1478

By

0.07536

0.002880

1 3 -3 - -
X X

(left) and modeled (right) with the similarity

l0.1900

0.1523

0.1146

0.07690

0.03920

0.001500

*Vorticity-

vr

— (CA)2(wzwz-)1/2

model t;, from Lu et al (2007).
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Model coefficients evaluated by matching M from

SGS Model Coefficient Estimates

ABL study of Sullivan et al (2003).
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SGS Model Coefficient Estimates

Smagorinsky coefficients with stability (Kleissl et al, 2004)
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FIG. 14. Smagorinsky coefficient ¢® as a function of A/L for dif-
ferent SGS models. Variables are averaged over all segments in each 0 . L
stability bin. (a) Array 1, A/z ~ 2.1 and (b) array 2, A/z ~ 1.1. -1 0 1 2 3 4 5
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SGS Model Coefficient Estimates

Smagorinsky coefficients with stability (Bou-Zeid et al, JFM 2010) gt = —ksc;sg = —Prite(c,A)? ‘5) ?.
(@ '

FIGURE 1.
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FIGURE 13. Variation of the SGS Prandtl number with the stability parameter based on the
Obukhov scale.
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SGS Model Coefficient Estimates

Smagorinsky coefficients with stability (Bou-Zeid et al, JFM 2010) gnodel — —km% = —Prite(c,A)? ‘5) %.
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FIGURE 1. SnoHATS: side view of the 12 sonics array (a) and the upwind fetch of 1.5 km (b).
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FIGURE 20. Variation of the SGS Prandtl number for unstable and stable conditions (note
that both axes are in logarithmic scale).
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Geometric Tensor Alignment
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Figure 9. (a) Joint probability density function of two angles describing the orientation of filtered
fluctuating vorticity vector in local negative SGS stress-tensor eigensystem. Filter scale is A =2 m.
The filtered fluctuating vorticity has a bimodal distribution giving two likely alignment config-
urations. The primary alignment is between filtered fluctuating vorticity and the intermediate
eigendirection of the SGS stress, f_. The secondary alignment is vorticity and the extensive eigen-
direction of the negative SGS stress, @ —z. (b) Joint PDF of three angles describing the orientation of
SGS stress tensor eigensystem in mean flow frame of reference. Filter scale is A = 2 m. The mean
flow streamwise direction is x, z is the vertical axis, and y is the transverse horizontal direction. The
planes represent slices through the three-dimensional function.
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Coherent Structures and SGS models

* SGS and coherent structures in the Utah desert (Carper and Porté-Agel , 2004)
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Figure 14. Conceptual model relating strong positive (4) and negative (—) SFS
dissipation events to different regions (shaded) around a hairpin-like coherent
structure. The solid lines outline an isosurface of vorticity with arrows indicating
the direction of rotation. The dotted lines indicate the planes on which the
conditionally averaged fields are reported with the key results shown within
dashed circles.
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