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An estimate of the rate of increase in numerical simulation grid sizes with time
is obtained by counting the grids (measured in terms of number of node points)
reported in the nine volumes of an established proceedings on the numerical modeling
of solidification phenomena dating back to 1980. It is shown that the largest grids
used in a given year increase at a rate consistent with the well-known Moore’s law on
computing power, i.e., the number of nodes in the grids double every 18 months. From
this observation, approximate bounds on the available grid size in a current year are
established. This approximation is used to provide projections as to when, assuming
Moore’s law continues to hold, direct simulations of physical phenomena, which
resolve to the smallest scale present, will be achievable. c© 2002 Elsevier Science (USA)

INTRODUCTION

In the mid 1960s Gordon Moore, the co-founder of Intel, made the observation that
computer power, P , measured by the number of transistors that could be fit onto a chip,
doubled once every 1.5 years [1]. This law, which has performed extremely well over the
proceeding 30 or so years, can be stated in mathematical terms as

P = A20.6667Y, (1)

where A is the computer power at the reference year Y = 0.
Major benefactors of an increase in computer power are those researchers working on

the development of numerical models of engineering and physical phenomena. Increased
power allows a refinement of the spatial and temporal approximations of the governing
equations and also allows researchers to accurately account for the wide range of length
and time scales present.

The objects of this article are to

1. Demonstrate that the increase in the size of numerical models, measured in terms of
the number of node points used in the spatial discretization, matches Moore’s law [1].
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2. Discuss how this finding can be used to make predictions about the future of numer-
ical modeling, in particular, predictions of when direct numerical simulations of physical
phenomena will be possible.

DATA SOURCES

The main data source, for tracking the increase in grid sizes, is the nine volumes from
the conference “Modeling of Casting Welding and Solidification Processes” [2–10], which
cover the time period of 1980 (Y = 0) to 2000 (Y = 20). These proceedings have a number
of key attributes:

1. The topic area is well focused.
2. The topic requires sophisticated computational models of heat and mass transfer

processes and phenomena.
3. The conference is well established.
4. The conference is relatively selective (∼140 papers per volume).
5. The central core of research groups involved has remained reasonably consistent over

the years.
6. The proceedings is a flagship in the area, where the current state of the art in modeling

of casting and welding is well represented.

To provide additional points for comparison two one-off conferences—held in 1987 and
1999 respectively—in the closely related area of materials process modeling [11, 12] are
also analyzed.

METHOD AND RESULTS

The measure of the numerical grid used is in terms of the total number of grid points,
and throughout this work a term such as “large grid size” refers to a computation that uses a
large number of grid points. In selecting the grid sizes from the papers in the proceedings,
the following rules were used:

1. Modeling results for the given grid size had to be reported—in many cases large
grid sizes were projected but results were not presented to support that calculations were
possible.

2. Only the largest grid size from each paper was recorded.
3. The grid size can be reported as number of “nodes” or number of “elements.” In a

typical application, the factor between nodes and elements is between 0.5 and 2 and as such
no attempt has been made to differentiate between nodes and elements.

4. In some cases, a figure of the grid used was supplied but no explicit numbers were
provided. If the grid was two dimensional and the figure easy to read, then the grid points
were counted by hand.

5. Some models employed adaptive meshing in which the mesh size evolved with the
calculation; counts on these were ignored.

Although this exercise is a little bit like Mendel’s assistants counting beans it should provide
a consistent picture of how grid sizes have increased through the years in response to
increased computer power.
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TABLE I

Grid Sizes in Node Points

Papers Grid size Grid size Grid size
Year reporting grids (page number) (page number) (page number)

1980 [2] 7 900 (52) 2,160 (204) 3,454 (143)
1983 [3] 8 861 (6) 954 (426) 32,400 (450)
1986 [4] 10 2,500 (176) 2,510 (502) 4,900 (217)
1987 [11] 11 1,759 (1130) 5,400 (435) 6,875 (418)
1988 [5] 20 46,875 (590) 57,621 (848) 152,361 (789)
1991 [6] 19 180,000 (28) 308,000 (731) 1,068,144 (774)
1993 [7] 19 738,000 (395) 1,000,000 (26) 2,193,750 (395)
1995 [8] 24 72,464 (217) 400,000 (360) 413,952 (750)
1998 [9] 38 1,728,000 (579) 6,349,500 (767) 34,409,821 (440)
1999 [12] 20 470,000 (98) 2,097,152 (67) 50,000,000 (357)
2000 [10] 32 5,000,000 (321) 10,396,350 (369) 120,000,000 (234)

The three largest recorded grid sizes (in ascending order) are tabulated in Table I. This
table gives the year, number of papers reporting a grid size, and also matches the page
number in the proceeding volume to the recorded grid size.

Figure 1 plots the logs of the three largest grid sizes from each volume against year. As
points of reference two realizations of Moore’s law, Eq. (1), are plotted using values of
A = 100 and 10,000. Although, as might be expected, there is a fairly high degree of scatter,
Fig. 1 clearly shows that increases in grid sizes do match Moore’s law. For a given year,
reasonable bounds on the maximum grid size used, are given by

100 20.6667(Year−1980) < N (t) < 10000 20.6667(Year−1980) (2)

Further, an overall best fit to the data in Table I results in the single equation

N (t) = 691 20.697(Year−1980). (3)
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FIG. 1. Log of three largest grid sizes from each volume plotted against year.
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This equation is shown as a dashed line in Fig. 1. Note the exponent, p = 0.697, is very
close to the value of 0.667 required by Moore’s law.

Although the bounds in Eq. (2) are specific to the area of materials modeling, they do
appear to be appropriate for other numerical modeling fields. The open circles in Fig. 1
correspond to a sampling of grid sizes used in large eddy simulations of atmospheric
boundary layers [13–16]. In this case, the search through all available grids is not as rigorous
as for the casting case. Nevertheless, the sampling does indicate that grids used in the
modeling of atmospheric boundary layers do fall inside the bounds given by Eq. (2).

DISCUSSION

The essence of modeling casting and welding processes is to arrive at, via the solution
of heat and fluid flow equations, a complete description of the chemical and structural
composition in a cast product. A direct simulation of such a process will require a domain
size at the process level (∼1 m) that will have to resolve phenomena down to the length
scale of the solid–liquid interface. Typically, the smallest length scale will be the order of a
dendrite tip radius, which could approach 1 �m [17]. In some cases, however, simulations
may need to resolve to the lattice spacing (∼1 nm) [17]. In the former case, 106 nodes
will be needed in each dimension, in the later 109. The direct simulation of a 1 m3 casting
resolving phenomena to the lattice length scale will need 1027 nodes.

A similar spread of length scales is needed in the direct numerical simulation of at-
mospheric boundary layers [18]. In this case a typical domain size will be ∼10 km but
calculations will have to be resolved to the smallest turbulent length scale, that is, on the
order of 1 mm; such calculations will need 107 node points in each direction.

Assuming generality and continued validity of the bound in Eq. (2), projections can be
made as to when various direct simulations of physical phenomena will be possible; see
Table II. From this table it can be observed that complete three-dimensional direct numerical
simulations of casting and turbulence phenomena cannot be expected to occur until well
into this century and, in some cases, not until the turn of the century.

TABLE II

Expected Year (±5) That the Given Direct Simulation Will Be Possible

If Grid Size Increases Are Bound by Eq. (2)

Domain Resolution Grid points Expected year
Simulation length scale length scale required (±5 years)

2-D casting 0.1 m 1 �m (dendrite tip) 1010 2015
2-D casting 1 m 1 �m (dendrite tip) 1012 2025
3-D casting 0.1 m 1 �m (dendrite tip) 1015 2040
Boundary layer 100 m 1 mm 1015 2040
2-D casting 0.1 m 1 nm (lattice space) 1016 2045
3-D casting 1 m 1 �m (dendrite tip) 1018 2055
2-D casting 1 m 1 nm (lattice space) 1018 2055
Boundary layer 1 km 1 mm 1018 2055
Boundary layer 10 km 1 mm 1021 2070
3-D casting 0.1 m 1 nm (lattice space) 1024 2085
3-D casting 1 m 1 nm (lattice space) 1027 2100
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In the case of modeling solidification, this situation can be improved by the use of adaptive
meshing in the vicinity of the solid–liquid interface [19, 20] or the coupling of conventional
numerical solutions with Monte Carlo [21] and cellular automata [22]. In using adaptive
grids in solidification, modeling computational requirements have been shown to scale with
the arc-length of the solid–liquid interface [19]. In one recent example of adaptive meshing,
the number of nodes in a 3-D calculation was reduced from 4 × 106 to 1.2 × 105 nodes [20];
this effectively reduced the dimension for the problem from 3 to 2.3. If this grid saving
scales to larger problems it will reduce the projected time for a complete 3-D casting
simulation by ∼30 years (2100 to 2070).

CONCLUDING REMARKS

This article has demonstrated that numerical grid sizes used in the simulation of physical
phenomena follow Moore’s law by doubling in size every 18 months. It remains an open
question as to why such a scaling should occur. The observed scaling could suggest that
the willingness to wait for results has remained constant over time. Such an interpretation,
however, is confused if one considers issues related to calculation complexity and the impact
of parallel architectures. In this light, the authors cannot see a clear scientific methodology
that would uncover specific reasons why the scaling should hold. We leave it to the reader
to speculate.

The study of the specific research area of solidification modeling has led to an explicit
approximation (Eq. (2)) on how grid sizes (measured in terms of the number of nodes)
would increase in time if Moore’s law continued to hold. This model suggests that it may
not be until the later part of this century that computing will be powerful enough to tackle
direct numerical simulations of phenomena such as metal solidification and atmospheric
boundary layers. For the foreseeable future, full-scale modeling of physical processes will
have to be based on grids with spacing significantly larger than the smallest length scales
of the underlying phenomena. Hence, research efforts aimed at

1. using volume averaging and sub grid models to capture the average effects of small
scale phenomena in larger scale process models, and/or

2. the continued development of adaptive grid strategies will continue to be a key area
of research in computational physics.
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