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INTRODUCTION

Despite over a century of research, turbulence remains the major unsolved
problem of classical physics. While most researchers agree that the basic
physics of turbulence can be described by the Navier-Stokes equations,
limitations in computer capacity make it impossible--for now and the
foreseeable future--to directly solve these equations for the complex tur-
bulent flows of technological interest. Hence, virtually all scientific and
engineering calculations of nontrivial turbulent flows, at high Reynolds
numbers, are based on some type of modeling. This modeling can take a
variety of forms:

1. Reynolds-stress models, which allow for the calculation of one-point
first and second moments such as the mean velocity, mean pressure,
and turbulent kinetic energy;

2. subgrid-scale models for large-eddy simulations, wherein the large,
energy-containing eddies are computed directly and the effect of the
small scales--which are more universal in character--are modeled;

3. two-point closures or spectral models, which provide more detailed
information about the turbulence structure, since they are based on the
two-point velocity correlation tensor; or
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108 SPEZIALE

4. pdfmodels based on the joint probability density function.

Large-eddy simulations (LES) have found several important geophysical
applications in weather forecasting and in other atmospheric studies (of
Deardorff 1973, Clark & Farley 1984, Smolarkiewicz & Clark 1985).
Likewise, LES has shed new light on the physics of certain basic turbulent
flows--which include homogcneous shear flow and channel flow--at
higher Reynolds numbers that are not accessible to direct simulations (cf
Moin & Kim 1982, Bardina et al 1983, Rogallo & Moin 1984, Piomelli et
al 1987). Two-point closures such as the EDQNM (Eddy-Damped Quasi-
Normal Markovian) model of Orszag 0970) have been quite useful in the
analysis of homogeneous turbulent flows, where they have provided new
information on the structure of isotropic turbulence (cf Lesieur 1987) and
on the effect of shear and rotation (cf Bertoglio 1982). However, there are
a variety of theoretical and operational problems with two-point closures
and large-eddy simulations that make their application to strongly
inhomogeneous turbulent flows difficult, if not impossible--especially in
irregular geometries with solid boundaries. There have been no appli-
cations of two-point closures to wall-bounded turbulent flows, and vir-
tually all such applications of LES have been in simple geometries where
Van Driest damping could be used--an empirical approach that generally
does not work well when there is flow separation. Comparable problems
in dealing with wall-bounded flows have, for the most part, limited pdf
methods to free turbulent flows, where they have been quite useful in the
description of chemically reacting turbulence (see Pope 1985). Since most
practical engineering flows involve complex geometries with solid bound-
aries--at Reynolds numbers that are far higher than those that are acces-
sible to direct simulations--the preferred approach has been to base such
calculations on Reynolds-stress modeling. ~ This forms the motivation for
the present review paper, whose purpose is to put into perspective some
of the more recent theoretical developments in Reynolds-stress modeling.

The concept of Reynolds averaging was introduced by. Sir Osborne
Reynolds in his landmark turbulence research of the latter part of the
nineteenth century (see Reynolds 1895). During a comparable time frame,
Boussinesq (1877) introduced the concept of the turbulent or eddy viscosity
as the basis for a simple time-averaged turbulence closure. However, it
was not until after 1920 that the first successful calculation of a practical
turbulent flow was achieved based on the Reynolds-averaged Navier-
Stokes equations with an eddy-viscosity model. This was largely due to

~ In fact, the only alternative of comparable simplicity is the vorticity transport theory of
Taylor (1915); a three-dimensional vorticity covariance closure along these lines has been
recently pursued by Bernard and coworkers (cf Bernard & Berger 1982).
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REYNOLDS-STRESS CLOSURES 109

the pioneering work of Prandtl (1925), who introduced the concept of the
mixing length as a basis for the determination of the eddy viscosity. This
mixing-length model led to closed-form solutions for turbulent pipe and
channel flows that were remarkably successful in collapsing the existing
experimental data. A variety of turbulence researchers--most notably von
Kfirmfi.n (1930, 1948)--made further contributions to the mixing-length
approach, which continued to be a highly active area of research until
the post-World War II period. By this time it was clear that the basic
assumptions behind the mixing-length approach--which makes a direct
analogy between turbulent transport processes and molecular transport
processes--were unrealistic; turbulent flows do not have a clear-cut sepa-
ration of scales. With the aim of developing more general models, Prandtl
(1945) tied the eddy viscosity to thc turbulent kinetic energy, which was
obtained from a separate modeled transport equation. This was a pre-
cursor to the one-equation models of turbulence--or the so-called K-I
models--wherein the turbulent length scale I is specified empirically and
the turbulent kinetic energy K is obtained from a modeled transport
equation. However, these models still suffered from the deficiencies intrin-
sic to all eddy-viscosity models: the inability to properly account for
streamline curvature, body forces, and history effects on the individual
Reynolds-stress components.

In a landmark paper by Rotta (1951), the foundation was laid for a full
Reynolds-stress turbulence closure, which was to ultimately change the
course of Reynolds-stress modeling. This new approach of Rotta--which
is now referred to as second-order or second-moment closure--was based
on the Reynolds-stress transport equation. By making use of some of the
statistical ideas ofA. M. Kolmogorov from the 1940s (and by introducing
some entirely new ideas), Rotta succeeded in closing the Reynolds-stress
transport equation. This new Reynolds-stress closure, unlike eddy-vis-
cosity models, accounted for both history and nonlocal effects on the
evolution of the Reynolds-stress tensor--features whose importance had
long been known. However, since this approach required the solution of
six additional transport equations for the individual components of the
Reynolds-stress tensor, it was not computationally feasible for the next
few decades to solve complex enginccring flows based on a full second-
order closure. By the 1970s, with the wide availability of high-speed com-
puters, a new thrust in the development and implementation of second-
order closure models began with the work of Daly & Harlow (1970) and
Donaldson (1972). In an important paper, Launder, Reece & Rodi (1975)
developed a new second-order closure model that improved significantly
on the earlier work of Rotta (1951). More systematic models for the
pressure-strain correlation and turbulent transport terms were derived by
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1 I0 SPEZIALE

Launder, Reece & Rodi; a modeled transport equation for the turbulent
dissipation rate was also solved in conjunction with this Reynolds-stress
model. However, more importantly, Launder, Reece & Rodi (1975)
showed how second-order closure models could be calibrated and applied
to the solution of practical turbulent flows. When the Launder, Reece &
Rodi (1975) model is contracted and supplemented with an eddy-viscosity
representation for the Reynolds stress, a two-equation model (referred to
as the K-e model) is obtained, which is almost identical to that derived by
Hanjali6 & Launder (1972) a few years earlier. Because of the substantially
lower computational effort required, the K-e model is still one of the most
commonly used turbulence models for the solution of practical engineering
problems.

Subsequent to the publication of the paper by Launder, Reece & Rodi
(1975), various turbulence modelers have continued research on second-
order closures. For example, Lumley (1978) implemented the important
constraint of realizability and made significant contributions to the model-
ing of the pressure-strain correlation and buoyancy effects. Launder and
coworkers continued to expand on the refinement and application of
second-order closure models to problems of significant engineering interest
(see Launder 1990). Speziale (1985, 1987a) exploited invariance argu-
ments-along with consistency conditions for solutions of the Navier-
Stokes equations in a rapidly rotating frame--to develop new models for
the rapid pressure-s~rain correlation. Haworth & Pope (1986) developed
a second-order closure model starting from the pdf-based Langevin equa-
tion. W. C. Reynolds (private communication, 1988) has attempted 
develop models for the rapid pressure-strain correlation by using Rapid-
Distortion Theory (RDT).

In this paper, analytical methods for the derivation of Reynolds-stress
models are reviewed. Zero-, one-, and two-equation models are considered
along with second-order closures. Two approaches to the development of
models are discussed.

1. The continuum mechanics approach, which is typically based on a
Taylor expansion. Invariance constraints--as well as other consistency
conditions such as RDT and realizability--are then used to simplify
the model. The remaining constants are evaluated by reference to bench-
mark physical experiments.

2. The statistical mechanics approach, which is based on the construction
of an asymptotic expansion. Unlike in the continuum mechanics
approach, here the constants of the model are calculated explicitly.
The two primary examples of this approach are the two-scale Direct
Interaction Approximation (DIA) models of Yoshizawa (1984) and 
Renormalization Group (RNG) models of Yakhot & Orszag (1986).
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REYNOLDS-STRESS CLOSURES 11 1

The basic methodology of these two techniques are examined here;
however, more emphasis is placed on the continuum-mechanics approach,
since there is a larger body of literature on this method and since it has
been the author’s preferred approach. The strengths and weaknesses of a
variety of Reynolds-stress models are discussed in detail and illustrated by
examples. A strong case is made for the superior predictive capabilities of
second-order closures in comparison to the older zero-, one-, and two-
equation models. However, some significant deficiencies in the structure
of second-order closures that still remain are pointed out. These issues, as
well as the author’s views concerning possible future directions of research,
are discussed in the sections to follow.

BASIC EQUATIONS OF REYNOLDS-STRESS
MODELING

We consider here the turbulent flow of a viscous, incompressible fluid with
constant properties. (Limitations of space do not allow us to discuss
compressible turbulence modeling in any detail.) The governing field equa-
tions are the Navier-Stokes and continuity equations, which are given by

c3u_~ + uj c~ui c3p + vV 2ui,
c3t c3xj c3xi

c3ui
Oxi O,

O)

(2)

where ui is the velocity vector, p is the modified pressure (which can include
a gravitational potential), and v is the kinematic viscosity of the fluid. In
(1)-(2), the Einstein summation convention applies to repeated indices.

The velocity and pressure are decomposed into mean and fluctuating
parts as follows:

ui= ff,+uS, p =/~+p’. (3)

It is assumed that any flow variables ~b and ~k obey the Reynolds-averaging
rules (cf Tennekes & Lumley 1972):

4~’= ¢’ =0, (4)

~ = ~ ~ + ~’~’, (5)
q~’~ = ~k’q~ = 0. (6)

In a statistically steady turbulence, the mean of a flow variable q5 can be
taken to be the simple time average
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112 SPEZIALE

~ = ~(T)(x) = ~li~rn~ ~ r~b(x, t)dt, (7)

whereas for a spatially homogeneous turbulence, a volume average can be
used, i.e.

~ : ~(v)(t) ~ ~ ~ ~(x, t) d3x. (8)

For more gencral turbulent flows that are neither statistically steady nor
homogeneous, the mean of any flow variable 4 is taken to be the ensemble
mean

1
~ = ~(x, 0 ~ ~i~ ~, ~(x, (9)

where an average is taken over N repeated experiments. The crgodic
hypothesis is assumed to apply~namely, that in a statistically steady
turbulent flow, it is assumed that

and in a homogeneous turbulent flow it is assumed that

8(~ = 8(~. (11)
The Reynolds-averaged Navier-Stokes equation~which physically cor-

responds to a balance of mean linear momentum~takes the fo~

~6y: = + vVZ6~- , 02)

where

~ = u;u~ (13)
is the Reynolds-stress tensor. Equation (12) is obtained by substituting the
decompositions (3) into the Navier-Stokes equation (1) and then taking
an ensemble mean. The mean continuity equation is given by

~ = 0 (14)
8x~

and is obtained by simply taking the ensemble mean of (2). Equations
(12)-(14) do not represent a closed system for the determination of 
mean velocity a~ and mean pressure fi because of the additional six
unknowns contained within the Reynolds-stress tensor. The problem of
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REYNOLDS-STRESS CLOSURES 113

Reynolds-stress closure is to tie the Reynolds-stress tensor to the mean-
velocity field in some physically consistent fashion.

In order to gain greater insight into the problem of Reynolds-stress
closure, we now consider the governing field equations for the turbulent
fluctuations. The fluctuating momentum equation--from which u~is deter-
mined--takes the form

au; au; ,au~ ,aa~ ap’ a~;~
+6~.. = -uj -uj +vV2u~+

Oxj c~x~ #xi Oxj
(15)

and is obtained by subtracting (12) from (1) after the decompositions 
are introduced. The fluctuating continuity equation, which is obtained by
subtracting (14) from (2), is given 

~u;
-- = 0. (16)
Oxi

Equations (15)-(16) have solutions for the fluctuating velocity u~ that 
of the general mathematical form

u;(x, t) = o~/[fi(y, s), u’(y, 0), u’(y, s) la¢; y~, se(-oo, t),
(17)

where 4[’] denotes a functional, ~/~ is the volume of the fluid, and O~/~ is
its bounding surface. In alternative terms, the fluctuating velocity is a
functional of the global history of the mean-velocity field with an implicit
dependence on its own initial and boundary conditions. Here we use the
term functional in its broadest mathematical sense--namely, any quantity
determined by a function. From (17), we can explicitly calculate the Rey-
nolds-stress tensor zij --- u~uj, which will also be a functional of the global
history of the mean velocity. However, there is a serious problem in regard
to the dependence of zij on the initial and boundary conditions for the
fluctuating velocity, as discussed by Luml@ (1970). There is no hope for
a workable Reynolds-stress closure if there is a detailed dependence on
such initial and boundary conditions. For turbulent flows that are
sufficiently far from solid boundaries--and sufficiently far evolved in time
past their initiation--it is not unreasonable to assume that the initial and
boundary conditions on the fluctuating velocity (beyond those for
merely set the length and time scales of the turbulence. Hence, with this
crucial assumption, we obtain the expression

zij(x,t) o~i~[6(y,s),lo(y,s),%(y,s);x,t], ye ~, se(--oo, t), (18)

where l0 is the turbulent length scale, z0 is the turbulent time scale, and
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114 SPEZIALE

the functional ~j depends implicitly on the initial and boundary con-
ditions for zu [see Lumley (1970) for a more detailed discussion of these
points]. Equation (18) serves as the cornerstone of Reynolds-stress model-
ing. Eddy-viscosity models, which are of the form

~ --V T -- -~- --"fij
~OXj OXi)

(19)

(where the turbulent or eddy viscosity VT oS /0~/z0), represent one of the
simplest examples of (18). Of course, the assumption that the Reynolds-
stress tensor can be characterized by a single length and time scal6 con-
stitutes an idealization. Turbulent flows exhibit a wide range of excited
length and time scales; this is precisely the reason that they are so difficult
to compute directly.

Since we discuss second-order closure models later, it is useful at this
point to introduce the Reynolds-stress transport equation as well as the
turbulent dissipation-rate transport equation. The latter equation plays an
important role in many commonly used Reynolds-stress models where the
turbulent dissipation rate is used to build up thc turbulcnt lcngth and time
scales. If we denote the fluctuating momentum equation (15) in operator
form as

£(’u~ = 0, (20)

then the Reynolds-stress transport equation is obtained from the second
moment

u~u~+ u~u~ = o,

whereas the turbulent dissipation rate is obtained from the moment

(21)

where

(24)

2v ~x~ (&°u,-’) = O. (22)

More explicitly, the Reynolds-stress transport equation (21) is given by (cf
Hinze 1975)

8t +u~ ~- --Zik ~--Zjk ox~ +Hij--gi j- 8Xk +vV2ziJ’
(23)
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REYNOLDS-STRESS CLOSURES 115

(25)

(26)

are the pressure-strain correlation, dissipation-rate correlation, and third-
order diffusion correlation, respectively. On the other hand, the turbulent
dissipation rate transport equation (22) is given 

63~l -ffui~ixi = vV2e--Zv oxj Oxj Oxk 2v~ ~ OXk 2VU~ Ox~ OXkOXj

_ 2vz Oeu;
Ox~Ox~ Ox~Ox=’ (27)

where ~ ~ ~e, is the scalar dissipation rate. The seven higher order cor-
relations on the right-hand side of (27) correspond to three physical effects:
The first four terms give rise to the production of dissipation, the next two
te~s represent the turbulent diffusion of dissipation, and the last term
represents the turbulent destruction of dissipation.

Finally, before closing this section, it would be useful to briefly discuss
two constraints that have played a central role in the formulation of
modern Reynolds-stress models: realizability and frame invariance. The
constraint of realizability was first posed by Schumann (1977) and then
rigorously introduced by Lumley into Reynolds-stress transport models
[see Lumley (1978, 1983) for a more detailed discussion]. It requires that
a Reynolds-stress model yield positive component energies, i.e. that

r~ ~ 0, ~ = 1,2, 3 (28)

for any turbulent flow. The inequality (2g) @here Greek indices are used
to indicate that there is no summation) is a direct consequence of the
definition of the Reynolds-stress tensor given by (13). It was first shown
by Lumley that realizability could be satisfied identically in homogeneous
turbulent flows by Reynolds-stress transport models; this is accomplished
by requiring that whenever a component energy ~= vanishes, its time rate
G~ also vanishes.

Donaldson was probably the first to advocate the unequivocal use of
coordinate invariance in turbulence modeling (of Donaldson & Rosen-
baum 1968). This approach, which Donaldson termed "invariant
modeling," was based on the Reynolds-stress transport equation and
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116 SPEZIALE

required that all modeled tcrms be cast in tensor form. Prior to the 1970s
it was not uncommon for turbulence models to be proposed that were
incapable of being uniquely put in tensor form. (Hence, these older models
could not be properly extended to more complex flows, particularly to
ones involving curvilinear coordinates.) The more complicated question
of frame invariance--where time-dependent rotations and translations of
the reference frame are accounted for--was first considered by Lumley
(1970) in an interesting paper. A more comprehensive analysis of the effect
of a change of reference frame was conducted by the present author in a
series of papers published during the 1980s [see Speziale (1989) for a de-
tailed review of these results]. In a general noninertial reference frame, which
can undcrgo arbitrary time-dependent rotations and translations relative
to an inertial frame, the fluctuating momentum equation takes the form

+(t~y. ~ = -u~-- -u~=--

+vVau;+ =~ --2e~;u~, (29)

where eijk is the permutation tensor, and f2i is the rotation rate of the
reference frame relative to an inertial framing (see Speziale 1989). From
(29), it is clear that the e~olution of the fluctuating velocity only depends
directly on the motion of the reference frame through the Coriolis accelera-
tion; translational accelerations--as well as centrifugal and angular
accelerations--only have an indirect effect through the changes that they
induce in the mean-velocity field. Consequently, closure models for the
Reynolds-stress tensor must be form invariant under the extended Galilean
group of transformations

x* = x+cCt), (30)

which allows for an arbitrary translational acceleration -~ of the reference
frame relative to an inertial framing x.

In the limit of two-dimensional turbulence (or a turbulence where the
ratio of the fluctuating to mean time scales zo/To << 1), the Coriolis accel-
eration is derivable from a scalar potential that can be absorbed into the
fluctuating pressure (or neglected), yielding complete frame indifference
(see Speziale 1981, 1983). This invariance under arbitrary time-dependent
rotations and translations of the reference frame specified by

x* = Q(t)x+c(t) (31)

[where Q(t) is any time-dependent proper-orthogonal rotation tensor] is
referred to as Material Frame Indifference (MFI), the term that has been
traditionally used for the analogous manifest invariance of constitutive
equations in modern continuum mechanics. For general three-dimensional
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REYNOLDS-STRESS CLOSURES 117

turbulent flows where Zo/To = O(1), MFI does not apply as a result 
Coriolis effects, as was first pointed out by Lumley (1970). However, the
Coriolis acceleration in (29) can be combined with the mean velocity in such
a way that frame dependence enters exclusively through the appearance of the
intrinsic or absolute mean-vorticity tensor defined by (see Speziale 1989)

= 2 t, Oxs ~iXi)-{-emji~2m" (32)

This result, along with the constraint of MFI in the two-dimensional limit,
restricts the allowable form of models considerably.

ZERO-EQUATION AND ONE-EQUATION MODELS
BASED ON AN EDDY VISCOSITY

In the simplest continuum mechanics approach--whose earliest for-
mulations have often been referred to as phenomenological models--the
starting point is Equation (18). Invariance under the extended Galilean
group of transformations (30)--which any physically sound Reynolds-
stress model must obey--can be satisfied identically by models of the form

z,j(x, t) = o~?[fi(y, s) -- fi(x, s), 10(y, zo(y, s); x, t],

ye~/", se(-oo,t). (33)

The variables fi(y,s)-fi(x,s),/o(y,s), and zo(y,s) can be expanded 
Taylor series as follows:

fi(y, s) - fi(x, s) = (y,-- x,) 
2!

+ (s- t) (y,- xO +,.., (34)

Olo (s--/,)2 021o
/0(y,s) lo+(yi--x~)o~ I +(s-t)~ + 2! Ot2

+ (y,-x,)(yj--x~) 82lo
02lo-]-(S--t)(yi--Xi)~ix i -t-’" ",

(35)
2~

- ,&0 &o (s--t) 2 02"60
z0(y,s) Zo+(y~--xO~x~ +( s-t)~ + 2! ~t~

+ (yi--xi)(yj--xj) 02Zo
02Zo

q-(s--t)(yi--Xi)~ q- "" (36)
2~ OXiOX~ vtvx~
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where terms up to the second order are shown and it is understood that
fi, 10, and T0 on the right-hand side of (34)-(36) are evaluated 
and t. After splitting z~j into isotropic and deviatoric parts--and ap-
plying elementary dimensional analysis--the tbllowing expression is
obtained:

2 l°~ ~?[~(y, s) - r~(x, s); x, 
ye"U, se(-o~,t), (37)

where

1

are, respectively, the dimensionless mean velocity and the turbulent kinetic
energy. "~s is a traceless and dimensionless functional of its arguments. By
making use of the Taylor expansions (34)--(36), it is a simple matter 
show that

f~(y,s)-t~.(x,s) = z0 1-* * /’8ff~* /’~°~ (39)

where

y~*-x~* =- lo ’ \~xsJ =- T° #x~

are dimensionless variables of order one, given that To is the time scale of
the mean flow. If, analogous to the molecular fluctuations of most con-
tinuum flows, we assume that there is a complete separation of scales such
that

ro lo
--<< 1, --<< 1, (41)
To Lo

Equation (37) can then be localized in space and time. Of course, it is well
known that this constitutes an oversimplification; the molecular fluc-
tuations of most continuum flows are such that "co/To < 10-6, whereas
with turbulent fluctuations, "to/To can be of O(1).

By making use of (39)-(41), Equation (37) can be localized 
approximate form
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where
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(42)

ro (&~? (43)

is the dimensionless mean-velocity gradient. Since the tensor function Gu
is symmetric and traceless (and since 6i,j is traceless), it follows that, to the
first order in r0/T0, form invariance under a change of coordinates sim-
plifies (42) to (cf Smith 1971)

z~: = g K6~- VT ~ + 3x,J (44)

where

v~ ~ l~/ro (45)

is the eddy viscosity. While the standard eddy-viscosity model (44) comes
out of this derivation when only first-order terms in to/To are maintained,
anisotropic eddy-viscosity (or viscoelastic) models are obtained when
second-order terms are maintained. These more complicated models are
discussed in the next section.

Eddy-viscosity models are not closed until prescriptions are made for
the turbulent length and time scales in (45). In zero-equation models, both
l0 and r0 are prescribed algebraically, The earliest example of a successful
zero-equation model is Prandtl’s mixing-length theory (see Prandtl 1925).
By making analogies between the turbulent length scale and the mean free
path in the kinetic theory of gases, Prandtl argued that vx should be of the
form

VT = l;~, d~ (46)

for a plane shear flow where the mean velocity is of the form h = ~(y)i.
In (46), l~ is the "mixing length," which represents the distance traversed
by a small lump of fluid before losing its momentum. Near a plane solid
boundary, it was furthermore assumed that

l~ = Ky, (47)

where x is the von K~rmhn constant. (This result can be obtained from 
first-order Taylor-series expansion, since l~ must vanish at a wall.) When
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(46) (47) are used in conjunction with the added assumption that the shear
stress is approximately constant in the near-wall region, the celebrated
"law of the wall" is obtained:

u+ = _1 lny+ + C, (48)

where y+ is measured normal from the wall and

gt
y+ yu~u+ -= , -= (49)

Here u, is the friction velocity, and C is a dimensionless constant. Equation
(48) (with -" 0.4and C ="5.0) was remarkably successful in co lla psing
the experimental data for turbulent pipe and channel flows for a significant
range ofy+ varying from 30 to 1000 [see Schlichting (1968) for an interest-
ing review of these results]. The law of the wall is still heavily used to this
day as a boundary condition in the more sophisticated turbulence models
for which it is either difficult or too computationally expensive to integrate
directly to a solid boundary.

During the 1960s and 1970s, with the dramatic emergence of com-
putational fluid dynamics, some efforts were made to generalize mixing-
length models to three-dimensional turbulent flows. With such models,
Reynolds-averaged computations could be conducted with any exist-
ing Navier-Stokes computer code that allowed for a variable viscosity.
Prandtl’s mixing-length theory (46) has two straightforward extensions
to three dimensional flows: the strain-rate form

~T = ;~(2&&)% (50)
where ~;j- ½(&2;/Ox~+&VJax;) is the mean rate-of-strain tensor; or the
vorticity form

vT = ;~(a~,~;)% (51)

where ~; = e;/,Og~/Oxg is the mean-vorticity vector. The former model (50)
is due to Smagorinsky (1963) and has been primarily used as a subgrid-
scale model for large-eddy simulations; the latter model (51) is due 
Baldwin & Lomax (1978) and has been widely used for Reynolds-averaged
aerodynamic computations. Both models--which collapse to Prandtl’s
mixing-length theory (46) in a plane shear flow--have the primary advan-
tage of their computational ease of application. They suffcr from the
disadvantages of the need for an ad hoc prescription of the turbulent
length scale in each problem solved and of the complete neglect of history
effects. Furthermore, they do not provide for the computation of the

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


REYNOLDS-STRESS CLOSURES 121

turbulent kinetic energy, which is a crucial measure of the intensity of the
turbulence fluctuations. (Such zero-equation models only allow for the
calculation of the mean velocity and mean pressure.)

One-equation models were developed in order to eliminate some of the
deficiencies cited above--namely, to provide for the computation of the
turbulent kinetic energy and to account for some limited nonlocal and
history effects in the determination of the eddy viscosity. In these one-
equation models of turbulence, the eddy viscosity is assumed to be of the
form (see Kolmogorov 1942, Prandtl 1945)

VT = K~/21, (52)

where the turbulent kinetic energy K is obtained from a modeled version
of its exact transport equation

OK OK Offi 0 [1 , , , .~ .
-- = ~}uku~u;+pu;)+vWK. (53)
O l "q- ~i ~xi --’~iJ ~xj -- ~-- ~Xi

Equation (53), which is obtained by a simple contraction of (23), can 
closed once models for the turbulent transport and dissipation terms [i.e.
the second and third terms on the right-hand side of (53)] are provided.
Consistent with the assumption that there is a clear-cut separation of scales
(i.e. that the turbulent transport processes parallel the molecular ones),
the turbulent transport term is modeled by a gradient transport hypothesis,

1 YT OK
~u~Ru~ku~-]-p’I’I~ = ¢7K Oxi’ (54)

where aK is a dimensionless constant. By simple scaling arguments--
analogous to those made by Kolmogorov (1942) for high-turbulence Rey-
nolds numbers--the turbulent dissipation rate e is usually modeled as
follows:

K3/2
e = C*--- (55)

l ’

where C* is a dimensionless constant. A closed system of equations for
the determination of tii,/~, and K is obtained once the turbulent length
scale l is specified empirically. It should be mentioned that the modeled
transport equation for the turbulent kinetic energy specified by Equations
(53)-(55) cannot be integrated to a solid boundary. Either wall functions
must be used or low-Reynolds-number versions of (53)-(55) must 
substituted (cf Norris & Reynolds 1975, Reynolds 1976). It is interesting
to note that Bradshaw et al (1967) considered an alternative one-equation
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model, based on a modeled transport equation for the Reynolds shear
stress u’v’, which seemed to be better suited for turbulent boundary layers.

Since zero- and one-equation models have not been in the forefront of
turbulence-modeling research for the past 20 years, we do not present the
results of any illustrative calculations. [The reader is referred to Cebeci &
Smith (1974), Rodi (1980), and Bradshaw et al (1981) for some interesting
examples.] The primary deficiencies of these models are twofold: (a) the
use of an eddy viscosity, and (b) the need to provide an ad hoc specification
of the turbulence length scale. This latter deficiency with regard to the
length scale makes zero- and one-equation models incomplete; the two-
equation models that are discussed in the next section were the first com-
plete turbulence models (i.e. models that only require the specification of
initial and boundary conditions for the solution of problems). Nonetheless,
despite these deficiencies, zero- and one-equation models have made some
important contributions to the computation of practical engineering flows.
Their simplicity of structure--and reduced computing times--continue to
make them the most commonly adopted models for complex aerodynamic
calculations [see Ccbeci & Smith (1968) and Johnson & King (1984) 
two of the most popular such models].

TWO-EQUATION MODELS

A variety of two-equation models--which are among the most popular
Reynolds-stress models for scientific and engineering calculations--are
discussed in this section. Models of the K-e, K-l, and K-~o type are con-
sidered based on an isotropic as well as an anisotropic eddy viscosity.
Both the continuum mechanics and statistical mechanics approach for de-
riving such two-equation models arc discussed.

The feature that distinguishes two-equation models from zero- or one-
equation models is that two separate modeled transport equations are
solved for the turbulent length and time scales (or for any two linearly
independent combinations thereof). In the standard K-e model--which is
probably the most popular such model--the length and time scales are
built up from the turbulent kinetic energy and dissipation rate as follows
(see Hanjali6 & Launder 1972, Launder & Spalding 1974):

K3/2 K
l o ~C --, "Co ct~ --.

Separate modeled transport equations are solved for the turbulent kinetic
energy K and turbulent dissipation rate e. In order to close the exact
transport equation for K, only a model for the turbulent transport term
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on the right-hand side of (53) is needed; consistent with the overriding
assumption that there is a clear-cut separation of scales, the gradient
transport model (54) is used. The exact transport equation for e, given 
(27), can be rewritten in the form

where ~ represents the production of dissipation [given by the first four
correlations on the right-hand side of (27)], 9, represents the turbulent
diffusion of dissipation [given by the next two correlations on the right-
hand side of(27)], and 4~, represents the turbulent destruction of dissipation
[given by the last term on the right-hand side of (27)]. Again, consistent
with the underlying assumption (41), a gradient transport hypothesis 
used to model ~:

(57)
where ~ is a dimensionless constant. The production of dissipation and
destruction of dissipation are modeled as follows:

e, = e,(x, ~), (59)
where bu z (%- ~KOu)/2K is the anisotropy tensor. Equations (58) (59)
are based on the physical reasoning that the production of dissipation is
governed by the level of anisotropy in the Reynolds-stress tensor and the
mean-velocity gradients (scaled by K and e, which determine the length
and time scales), whereas the destruction of dissipation is determined by
the length and time scales alone (an assumption motivated by isotropic
turbulence). By simple dimensional analysis it follows that

~2¢~ = C~2, (60)

where C,~ is a dimensionless constant. Coordinate invariance coupled with
a simple dimensional analysis yields

~ 2C~ebb ~ ~
e

(61)

as the leading term in a Taylor-series expansion of (58) under the assump-
tion that II ~ II and to/To are small. (C~l is a dimensionless constant.) Equa-
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tion (61) was originally postulated based on the simple physical reasoning
that the production of dissipation should be proportional to the production
of turbulent kinetic energy (cf Hanjali~ & Launder 1972). A composition
of these various modeled terms yields the standard K-e model (cf Launder
& Spalding 1974):

VT = C,, T’ (62b)

= --*,2~ --e+ ~x/x/~ ~x/) + vV K, (62c)

Here, the constants assume the approximate values of C,, = 0.09, a~ = 1.0,
a~ = 1.3, C~ = 1.44, and C~z = 1.92, which are obtained (for the most
part) by comparisons of the model predictions with the results of physical
experinaents on equilibrium turbulent boundary layers and the decay of
isotropic turbulence. It should be noted that the standard K-e model (62)
cannot be integrated to a solid boundary; either wall functions or some
form of damping must be implemented [see Patel et al (1985) for 
extensive review of these methods].

At this point, it is instructive to provide some examples of the perfor-
mance of the K-e model in benchmark, homogeneous turbulent flows as
well as in a nontrivial, inhomogeneous turbulent flow. It is a simple matter
to show that in isotropic turbulence where

2 2
zi, = 5 K(t)6i~, ei, = 5c(t)6i~,

the K-e model predicts the following rate of decay of the turbulent kinetic
energy (cf Reynolds 1987):

K(t) = K0[l + (C~2-- l)eot/Ko]- ~/~c~2- (63)

Equation (63) indicates a power-law decay where K ~ t- L ~a result that
is not far removed from what is observed in physical experiments (cf
Comte-Bellot & Corrsin 1971).

Homogeneous shear flow constitutes another classical turbulent flow
that has been widely used to evaluate models, In this flow, an initially
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4.0

3.5 LES

K-~ Model --
3.0

~--2.0

~. O~ ~°~°°°

0.0
0 2 4 6 8 10

Figure 1 Time evolution of the turbulent kinetic energy in homogeneous shear flow.
Comparison of the predictions of the standard K-e model with the large-eddy simulation
(LES) of Bardina et al (1983) for eo/SKo = 0.296.

isotropic turbulence is subjected to a constant shear rate S with mean-
velocity gradients

Oxj
0 .

0

(64)

The time evolution of the turbulent kinetic energy obtained from the
standard K-e model is compared in Figure 1 with the large-eddy simulation
of Bardina et al (1983). (Here, K* =_ K/Ko is the dimensionless kinetic
energy, and t* =- St is the dimensionless time.) In so far as the equilibrium
states are concerned, the standard K-e model predicts (see Speziale & Mac
Giolla Mhuiris 1989a) that (b12)~ =--0.217 and (SK/e)~ = 4.82, in
comparison to the experimental values of (b ~ 2)o0 = - 0.15 and (SK/e)~o 
6.08, respectively2 (see Tavoularis & Corrsin 1981). Consistent with 
wide range of physical and numerical experiments, the standard K-e
model predicts that the equilibrium structure of homogeneous shear flow
is universal (i.e. attracts all initial conditions) in the phase space of u and
SK/e. Hence, from Figure 1 and the equilibrium results given above, it is
clear that the K-c model yields a qualitatively good description of shear

2 Here, (-)~ denotes the equilibrium value obtained in the limit as t ~ c~,
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flow; the specific quantitative predictions, however, could be improved upon.
As an example of the performance of the standard K-e model in a more

complicated inhomogeneous turbulence, the case of turbulent flow past a
backward-facing step at a Reynolds number Re ~ 100,000 is now
presented. [This is the same test case as that considered at the 1980/81
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows; it
corresponds to the experimental test case of Kim et al (1980).] In Figures
2a,b the mean-flow streamlines and turbulence-intensity profiles predicted
by the K-e model are compared with the experimental data of Kim et al
(1980). The standard K-e model--integrated using a single-layer log wall
region starting at y+ = 30--predicts a reattachment point of x/AH ~_ 5.7
in comparison to the experimental mean value of x/AH "- 7.0. This error,
which is of the order of 20%, is comparable to that which occurs in the
predicted turbulence intensities [see Figure 2b and Speziale & Ngo (1988)
for more detailed comparisons]. However, Avva et al (1988) reported 
improved prediction ofx/AH - 6.3 for the reattachment point by using a
fine mesh and a double-layer log wall region.

Recently, Yakhot & Orszag (1986) derived a K-~ model based on Re-
normalization Group (RNG) methods. In this approach, an expansion 
made about an equilibrium state with known Gaussian statistics by making
use of the correspondence principle. Bands of high wavenumbers (i.e. small
scales) are systematically removed and space is rescaled. The dynamical
equations for the renormalized (large-scale) velocity field account for the
effect of the small scales that have been removed through the presence of
an eddy viscosity. The removal of only the smallest scales gives rise to
subgrid-scale models for large-eddy simulations; the removal of suc-
cessively larger scales ultimately gives rise to Reynolds-stress models. In
the high-Reynolds-number limit, the RNG-based K-~ model of Yakhot &
Orszag (1986) is identical in form to the standard K-e model (62). However,
the constants of the model are calculated explicitly by the theory to
be C, -- 0.0837, C~1 = 1.063, C~2 = 1.7215, o-i~ -= 0.7179, and o-~ = 0.7179.
Beyond having the attractive feature of no undetermined constants, the
RNG K-e model of Yakhot & Orszag (1986) automatically bridges the
eddy viscosity to the molecular viscosity as a solid boundary is approached,
eliminating the need for the use of empirical wall functions or Van Driest
damping. It must be mentioned, however, that some problems with the
specific numerical values of the constants in the RNG K-e model have
recently surfaced. In particular, the value of C~1 = 1.063 is dangerously
close to C~ = 1, which constitutes a singular point of the e-transport
equation. For example, the growth rate 2 of the turbulent kinetic energy
(where K ~ a~* f or At* > > 1) p redicted by t he K-e model i n homogeneous
shear flow is given by (see Speziale & Mac Giolla Mhuiris 1989a)
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~ CIx(Cg2-C~I)2 -11/2

~ h(c0,- 1)(c~2-1)_l

which becomes singular when

REYNOLDS-STRESS CLOSURES 127

(65)

= 1. Consequently, the value of
C,1 = 1.063 derived by Yakhot & Orszag (1986) yields excessively large
growth rates for the turbulent kinetic energy in homogeneous shear flow
in comparison to both physical and numerical experiments (see Speziale
et al 1989).

One of the major deficiencies of the standard K-z model lies in its use
of an eddy-viscosity model for the Reynolds-stress tensor. Eddy-viscosity
models have two major problems associated with them: (a) They are
purely dissipative and hence cannot account for Reynolds-stress relaxation
effects, and (b) they are oblivious to the presence of rotational strains (e.g.
they fail to distinguish between the physically distinct cases of plane shear,
plane strain, and rotating plane shear). In order to overcome these
deficiencies, a considerable research effort has been directed toward the
development of nonlinear or anisotropic generalizations of eddy-viscosity
models. By keeping second-order terms in the Taylor expansions (34)-
(36), subject to invariance under the extended Galilean group (30), a 
general representation for the Reynolds-stress tensor is obtained:

~ = 5 tc°"i- z ~ ,%+ ~,l~(~&~- 

+e4lo~+fl’V&i), (66)

where

are the mean rate-of-strain and mean-vorticity tensors [el, ..., 0~4 are
dimensionless constants; in the linear limit as ~ ~ 0, the eddy-viscosity
model (44) is recovered]. When e4 = 0, the deviatoric part of (66) is of 
general form vu = A~j~Of~/Ox~ (where A~m depends algebraically on the
mean-velocity gradients), and hence the term "anisotropic eddy-viscosity
model" has been used in the literature. These models are probably more
accurately characterized as "nonlinear" or "viscoelastic" corrections to
the eddy-viscosity models. Lumley (1970) was probably the first to system-
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atically develop such models (with c~4 = 0); he built up the length and time
scales from the turbulent kinetic energy, turbulent dissipation rate, and the
invariants of ~qij and eSij. Saffman (1977) proposed similar anisotropic
models that were solved in conjunction with modeled transport equations
for K and cos (where co = elK). Pope (1975) and Rodi (1976) developed
alternative anisotropic eddy-viscosity models from the Reynolds-stress
transport equation by making an equilibrium hypothesis. Yoshizawa
(1984, 1987) derived a more complete two-equation model--with a non-
linear correction to the eddy viscosity of the full form of (66) -by means
of a two-scale Direct Interaction Approximation (DIA) method. In this
approach, Kraichnan’s DIA formalism (cf Kraichnan 1964) is combined
with a scale-expansion technique whereby the slow variations of the mean
fields are distinguished from the fast variations of the fluctuating fields by
means of a scale parameter. The length and time scales of the turbulence
are built up from the turbulent kinetic energy and dissipation rate for
which modeled transport equations are derived. These modeled transport
equations are identical in form to (62c) and (62d) except for the addition
of higher order cross-diffusion terms. The numerical values of the constants
are derived directly from the theory (as with the RNG K-e model).
However, in applications it has been found that these values need to be
adjusted (see Nisizima & Yoshizawa 1987).

Spcziale (1987b) developed a nonlinear K-~ model based on a simplified
version of (66) obtained by invoking the constraint of MFI in the limit 
two-dimensional turbulence. In this model--where the length and time
scales are built up from the turbulent kinetic energy and dissipation rate--
the Reynolds stress tensor is taken to be of the form3

2 K~ - 2 K3 [ 1 - - ~

where

4 2K o_- C~C~(Su- ~S,,,,,,6,~), (68)

Ox~ S~j- 8x~ ~’ (69)

is the frame-indifferent Oldroyd derivative of ~u, and Co = CE -= 1.68.

~lt is interesting to note that Rubinstein & Barton (1990) recently derived an alternative
version of this model--which neglects the convective derivative in (69)--by using the RNO
method of Yakhot & Orszag (1986).
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Equation (68) can also be thought of as an approximation for turbulent
flows where r0/T0 << 1, since MFI [which (68) satisfies identically] becomes
exact in the limit as z 0/T0 ~ 0. This model bears an interesting resemblance
to the Rivlin-Ericksen fluids of viscoelasticity; it has long been known that
there are analogies between the mean turbulent flow of a Newtonian fluid
and the laminar flow of a non-Newtonian fluid (cf Rivlin 1957). Speziale
(1987b) and Speziale & Mac Giolla Mhuiris (1989a) showed that 
model yields much more accurate predictions for the normal Reynolds-
stress anisotropies in turbulent channel flow and homogeneous shear flow.
[The standard K-~ model erroneously predicts that ~xx = ~yy = ~zz = ~K.)
As a result of this feature, the nonlinear K-e model is capable of predicting
turbulent secondary flows in noncircular ducts, unlike the standard K-c
model, which erroneously predicts a unidirectional mean turbulent flow
(see Figures 3a-c). Comparably good predictions of turbulent secondary

SECONDARY FLOW

Ux,Uy--~

Y

Fi#ure 3 Turbulent secondary flow in a rectangular duct: (a) experiments; (b) standard 
model; (c) nonlinear K-e model o1" Speziale (1987b).
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flOWS in a rectangular duct were obtained much earlier by Launder & Ying
(1972), Gessner & Po 0976), and Demuren & Rodi 0984), who used 
nonlinear algebraic Reynolds-stress model of Rodi (1976). As a result 
the more accurate prediction of normal Reynolds-stress anisotropies--
and the incorporation of weak relaxation effects---the nonlinear K-e model
of Speziale (1987b) was also able to yield improved results for turbulent
flow past a backward-facing step (compare Figures 4a,b with Figures
2a,b). Most notably, the nonlinear K-~ model predicts reattachment at
x/AH - 6.4--a value that is more in line with the experimental value of
x/AH "-7.0. (As shown earlier, the standard K-e. model yields a value
of x/AH "-_ 5.7 when a single-layer log wall region is used.) While these
improvements are encouraging, it must be mentioned that the nonlinear
K-e model still has many of the same deficiencies of the simpler two-
equation models--namely, the inability to properly account for com-
ponent Reynolds-stress relaxation effects or body-force effects.

Alternative two-equation models based on the solution of a modeled
transport equation for an integral length scale (the K-l model) or the
reciprocal time scale (the K-a) model) have also been considered during
the past 15 years. In the K-/model (see Mellor & Herring 1973) a modeled
transport equation is solved for the integral length scale l, defined by

1 f_~ R~i(x, r, t) d~r,
l(x,t) = f~ ~ 4rclrl2 (70)

where R~i -= u~(x, t)uj(x + r, t) is the two-point velocity-correlation tensor.
The typical form of the modeled transport equation for l is as follows:

8(Kl)ot +tiiO(Kl)t~xi -- OXil_~t;~ ~(vq-fllKi/2l)~ (Kl)q-fl2K3/2l~lxi]oxi

- fl,lz,~ axj - fl4K3/2, (71)

where fl~, ..., /~4 are empirical constants. Equation (71) is derived 
integrating the contracted form of a modeled transport equation for the
two-point velocity-correlation tensor Rij (see Wolfshtein 1970). Mellor and
coworkers have utilized this K-I model--with an eddy viscosity of the
form (52)--in the solution of a variety of engineering and geophysical
fluid-dynamics problems [see Mellor & Herring (1973) and Mellor 
Yamada (1974) for a more thorough review]. It has been argued--and
correctly so--that it is sounder to base the turbulent macroscale on the
integral length scale (70) rather than on the turbulent dissipation rate,
which only formally determines the turbulent microscale. However, for
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homogeneous turbulent flows, it is a simple matter to show that this K-I
model is equivalent to a K-e model where the constants C,, C,1, and
C,2 assume slightly different values (cf Speziale 1990). Furthermore, the
modeled transport equation (71) for l has comparable problems to the
modeled e-transport equation in so far as integrations to a solid boundary
are concerned. (Either wall functions or wall damping must be used.)
Consequently, at the current stage of development, it does not appear that
this type of K-I model offers any significant advantages over the K-e model.

Wilcox and coworkers have developed two-equation models of the K-to
type (see Wilcox & Traci 1976, Wilcox 1988). In this approach, modeled
transport equations are solved for the turbulent kinetic energy K and
reciprocal turbulent time scale co = e/K. The modeled transport equation
for co is of the form

(72)

where VT = y*K/CO, and yl, y2, "~,*, and a,o are constants. Equation (72) 
obtained by making the same type of assumptions in the modeling of the
exact transport equation for co that were made in developing the modeled
e-transport equation (62d). For homogeneous turbulent flows, there 
little difference between the K-e and K-co models. The primary difference
between the two models is in their treatment of the transport terms: The
K-e model is based on a gradient transport hypothesis tbr e., whereas the
K-o) model uses the same hypothesis for o) instead. Despite the fact that
co is singular at a solid boundary, there is some evidence to suggest that
the K-co model is more computationally robust for the integration of
turbulence models to a wall (i.e. there is the need for less empirical damp-
ing; see Wilcox 1988).

SECOND-ORDER CLOSURE MODELS

Theoretical Background

Although two-equation models are the first simple and complete Rey-
nolds-stress models to be developed, they still have significant deficiencies
that make their application to complex turbulent flows precarious. As men-
tioned earlier, the two-equation models of the eddy-viscosity type have
the following major deficiencies: (a) the inability to properly account for
streamline curvature, rotational strains, and other body-force effects; and
(b) the neglect of nonlocal and history effects on the Reynolds-stress
anisotropies. Most of these deficiencies are intimately tied to the assump-
tion that there is a clear-cut separation of scales at the second-moment
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level (i.e. the level of the Reynolds-stress tensor). This can best be illustrated
by the example of homogeneous shear flow presented in the previous
section. For this problem, the equilibrium value of the ratio of fluctuating
to mean time scales is given by

zo _ SK
-4.8

To- ~

for the K-e model. This is in flagrant conflict with the assumption that

zo/To << 1, which was crucial for the derivation of the K-e model! While
some of the deficiencies cited above can be partially overcome by the use
of two-equation models with a nonlinear algebraic correction to the eddy
viscosity, major improvements can only be achieved by higher order clos-
ures-the simplest of which are second-order closure models.

Second-order closure models are based on the Reynolds-stress transport
equation (23). Since this equation automatically accounts for the con-
vection and diffusion of Reynolds stresses, second-order closure models
(unlike eddy-viscosity models) are able to account for strong nonlocal and
history effects. Furthermore, since the Reynolds-stress transport equation
contains convection and production terms that adjust themselves auto-
matically in turbulent flows with streamline curvature or a system rotation
(through the addition of scale factors or Coriolis terms), complex turbulent
flows involving these effects are usually better described.

In order to develop a second-order closure, models must be provided
for the higher order correlations Cijk, l-lij , and eij on the right-hand side of
the Reynolds-stress transport equation (23). These terms, sufficiently far
from solid boundaries, are typically modeled as follows:

1. The third-order transport term C, Tk is modeled by a gradient transport
hypothesis that is based on the usual assumption that there is a clear-
cut separation of scales between mean and fluctuating fields.

2. The pressure-strain correlation FIi~ and the dissipation-rate correlation
eij are modeled based on ideas from homogeneous turbulence, wherein
the departures from isotropy are assumed to be small enough to allow
for a Taylor-series expansion about a state of isotropic turbulence.

Near solid boundaries, either wall functions or wall damping are used
in a comparable manner to that discussed in the last section. One important
point to note is that the crucial assumption of separation of scales is made
only at the third-moment level. This leads us to the raison d’6tre of second-
order closure modeling: Since crude approximations for the second moments
in eddy-viscosity models often yield adequate approximations for first-order
moments (i.e. ~ and ~), it may follow that crude approximations for the
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third-order moments can yield adequate approximations for the second-
order moments in Reynolds-stress transport models.

The pressure-strain correlation Ilij plays a crucial role in determining
the structure of most turbulent flows. Virtually all of the models for I-Iij
that have been used in conjunction with second-order closure models
are based on the assumption of local homogeneity. For homogeneous
turbulent flows, the pressure-strain correlation takes the form

&Tk
(73)~’lij = Aij + Moks gxt’

where

c UkU~ d3y

1 I ~° (c~u~ Ou~ c~u~ day
Mma = ~J-o~ \Oxs + Oxi} Oyk Ix-- Y I"

Here, the first term on the right-hand side of (73) is referred to as the slow
pressure-strain, whereas the second term is called the rapid pressure-
strain. It has been shown that Aq and Mises are functionals--in time and
wavenumber space--of the energy-spectrum tensor (of Weinstock 1981,
Reynolds 1987). In a one-point closure, this suggests models for A~ and
M~s~ that are funetionals of the Reynolds-stress tensor and turbulent
dissipation rate. Neglecting history effects, the simplest such models are
of the form

A~ = eag~j(h), (74)

Mi~e~ = K~//’i2kz(b). (75)

These algebraic models--based on the assumptions stated above--are
obtained by using simple dimensional arguments combined with the fact
that Hij vanishes in the limit of isotropic turbulence [a constraint identically
satisfied ifagi~(0) = 0 and ~[/[ijkl(O) 0] . Essentially every model for th e
pressure-strain correlation that has been used in second-order closures is
of the form (73)-(75).

Lumley (1978) was probably the first to systematically develop a general
representation for the pressure-strain correlation based on (73)-(75). 
can be shown that invariance under a change of coordinates--coupled
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with the assumption of analyticity about the isotropic state bij = 0-
restricts (73) to be of the form4

lqij = a oabij.-~ a i a(bikbkj - ~IIfi0 + a 2K~ij

+ (a~tr b" ~ + a4tr e" ~)Kbi/+ (astr b" ~

+ a6tr b2" ~)K(bikbkj-- ~II6ij ) + aTK(bik~jg

+ b:g~.e - ]tr b" g~:) + asK(b~bg,~

+ b~b~,~,- ~tr b2. ~,~) + agK(b,~@~

+ b~g~) + a ~ oK(b~b~:z + b~gbez~z), (76)

where

ai = ai(II, III), i = 0, 1 .... ,10,

II = bi~bij, III = b~kbklbli,

and tr(’) denotes the trace. The eigenvalues (~) of bgj are bounded as follows
(see Lumley 1978)

- ~ _< b¢~) _< ~, ¢ = 1, 2, 3, (77)

and for many engineering flows, IIbll~ -= {b(~)lmax < 0.25. Hence, it would
seem that a low-order Taylor-series truncation of (76) could possibly
provide an adequate approximation. To the first order in b~, one has

+C4X(b,~,.+b~x), (78)

which is the fo~ used in the Launder, Reece & Rodi (1975) model, 
this model (henceforth labeled LRR), the constants C~, C3, and C4 were
calibrated based on the results of return to isotropy and homogeneous
shear-flow experiments. The constant C~ was chosen to be consistent with
the value obtained by Crow (1968) from RDT for an irrotationally strained
turbulence starting from an initially isotropic state. This yielded the fol-
lowing values for the constants in the simplified version of the LRR model:
C~ = 3.6, Cz = 0.8, C3 = 0.6, and C~ = 0.6. It should be noted that the
representation for the slow prcssure-strain correlation in the LRR model
is the Rotta (1951) return-to-isotropy model with the Rotta constant 
adjusted from 2.8 to 3.6 (a value that is in the range of what can be
extrapolated from physical experiments). This model~consistent with

~ This representation, obtained by using the results of Smith (1971) on isotropic tensor
functions, is actually somewhat more compact than that obtained by Lumley and coworkers.
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experiments--predicts that an initially anisotropic, homogeneous tur-
bulence relaxes gradually to an isotropic state after the mean-velocity
gradients are removed.

An even simpler version of (78) was proposed by Rotta (1972) wherein
C3 = C4 = 0. This model has been used by Mellor and coworkers for the
calculation of many engineering and geophysical flows (see Mellor 
Herring 1973, Mellor & Yamada 1974). Research during the past decade
has focused attention on the development of nonlinear models for Hu.
Lumley (1978) and Shih & Lumley (1985) developed a nonlinear model
by using the constraint of realizability discussed earlier. Haworth & Pope
(1986) developed a nonlinear model for the pressure-strain correlation
based on the Langevin equation used in the pdf description of turbulence.
This model--which was cubic in the anisotropy tensor--was calibrated
based on homogeneous-turbulence experiments and was shown to perform
quite well for a range of such flows. Speziale (1987a) developed a hierarchy
of second-order closure models that were consistent with the MFI con-
straint in the limit of two-dimensional turbulence. 5 [This constraint was
also used by Haworth & Pope (1986) in the development of their second-
order closure.] Launder and coworkers (cf Fu et al 1987, Craft et al 1989)
have developed new nonlinear models for the pressure-strain correlation
based on the use of realizability combined with a calibration using newer
homogeneous-turbulence experinrents. W. C. Reynolds (private com-
munication, 1988) has attempted to develop models that are consistent
with RDT, and the present author has been analyzing models based on a
dynamical-systems approach (see Speziale & Mac Giolla Mhuiris 1989a,b,
Speziale et al 1990).

The modeling of the dissipation-rate tensor, at high turbulence Reynolds
numbers, is usually based on the Kolmogorov hypothesis of isotropy in
which

F.ij = ~F.~ij, (79)

given that ~ -~ vdu~/SxjSu~/Sxi is the scalar dissipation rate. Here, the tur-
bulent dissipation rate e is typically taken to be a solution of the modeled
transport equation

where C~ = 1.44, C~ = 1.92, and C~ = 0.15. Equation (80) is identical 

s MFI in the limit of two-dimensional turbulence can be satisfied identically by (76) 

a~0 = --3a9+ 12; see Speziale (1987a).
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the e-transport equation used in the K-e model, with one exception: The
turbulent diffusion term is anisotropic. Hence, the logic used in deriving
(80) is virtually the same as that used in deriving the modeled e-transport
equation for the K-e model. Near solid boundaries, anisotropic corrections
to (79) have bccn proposed that arc typically of the algebraic form (scc
Hanjali~ & Launder 1976)

eij = ~eOij+ 2sfsbij, (81)

where f~ is a function of the turbulence Reynolds number Re~ = K2/ve.
Equation (81)--which can be thought of as a first-order Taylor-series
expansion about a state of isotropic turbulence--is solved in conjunction
with (80), where the model coefficients are taken to be functions of Ret 
a solid boundary is approached (cf Hanjali6 & Launder 1976). Since the
commonly used models for the deviatoric part of e,- i are similar in form to
the first term in (76), it is possible to use the isotropic model (79) 
then model the deviatoric part of eq together with the pressure-strain
correlation, as was first pointed out by Lumley (1978). Also, as an alter-
native to (81), the isotropic form (79) can be used in a wall-bounded 
if suitable wall functions are used to bridge the outer and inner flows.

One major weakness of the models (80)-(81) is their neglect of rotational
strains. For example, in a rotating isotropic turbulence, the modeled e-
transport equation (80) yields the same decay rate independent of the
rotation rate of the reference frame. In stark contrast to this result, physical
and numerical experiments indicate that the decay rate of the turbulent
kinetic energy can be considerably reduced by a system rotation--the
inertial waves generated by the rotation disturb the phase coherence needed
to cascade energy from the large scales to the small scales (see Wigeland
& Nagib 1978, Speziale et al 1987). A variety of modifications to (80) have
been proposed during the last decade to account for rotational strains (see
Pope 1978, Hanjalid & Launder 1980, Bardina et al 1985). However, these
modifications tended to be "one-problem" corrections that gave rise to
difficulties when other flows were considered. It was recently shown by the
present author that all of these modified e-transport equations are more ill
behaved than the standard model (80) for general homogeneous turbulent
flows in a rotating frame (e.g. they fail to properly account for the sta-
bilizing effect of a strong system rotation on a homogeneously strained
turbulent flow; see Speziale 1990).

At this point it should be mentioned that in the second-order closure
models of Mellor and coworkers, the dissipation rate is modeled as in
Equation (55), and a modeled transport equation for the integral length
scale (70) is solved that is identical in form to (71). When this model 
been applied to wall-bounded turbulent flows it has typically been used in
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conjunction with wall functions. In addition, it should also be mentioned
that second-order closure models along the lines of the K-co model of
Wilcox and coworkers have been considered. [Here a modeled transport
equation for the reciprocal time scale co = elk is solved (cf Wilcox 1988).]

In order to complete these second-order closures, a model for the third-
order diffusion correlation C0.k is needed. Since this is a third-order
moment, the simplifying assumption of gradient transport (which is gen-
erally valid only when there is a clear-cut separation of scales) is typically
made. Hence, all of the commonly used second-order closures are based
on models for C;jk of the form

Cijk = -- ~ijklmn ~Xn,

where the diffusion tensor c~ij~,~n can depend anisotropically on ~z~. For
many incompr~ssibl~ turbulent flows, the pressure-diffusion terms in C~
can be neglected in comparison to the triple velocity correlation u~u~u~.
Then, the symmetry of Cij~ under an interchange of any of its three indices
immediatdy yields the form

~ Kf ~jk O~ik ~ij~

which was first obtained by Launder, Reeee & Rodi (1975) via an alter-
native analysis based on the transport equation for u&u~. Equation (82)
is sometimes used in its isotropized fore

c,~ = - 5 c~ ~ kax, ~ + &~/ (83)

(cf Mellor & Herring 1973). The constant Q was chosen to be 0.11 
Launder, Reece & Rodi (1975) based on comparisons with experiments
on thin shear flows. Similar models for C,~ have been derived by Lumley
(1978) from first principles (see also Lumley & Khajeh-Nouri 1974).

Examples

Now, by the use of some illustrative examples, a case is made for the
superior predictive capabilities of second-order closures in comparison to
zero-, one-, and two-equation models. First, to demonstrate the ability of
second-order closure models to describe Reynolds-stress relaxation effects,
we consider the return-to-isotropy problem. In this problem, an initially
anisotropic, homogeneous turbulence~generated by the application of
constant mean-velocity gradients~gradually relaxes to a state of isotropy
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after the mean-Velocity gradients are removed. By introducing the trans-
formed dimensionless time z (where dz = e dt/2K), the modeled Reynolds-
stress transport equation can be written in the equivalent form

dbu
dz - 2bu+~/u’

(84)

where ~¢’u is the dimensionless slow pressure-strain correlation. Since the
rapid pressure-strain and transport terms vanish in this problem--and
since the dissipation rate can be absorbed into the dimensionless time ~--
only a model for the slow pressure-strain correlation is needed, as indicated
in (84). In Figure 5, the predictions of the LRR model (where ~¢u -- Clbu
and the Rotta constant C~ -- 3.0) for the time evolution of the anisotropy
tensor are compared with the experimental data of Choi & Lumley (! 984)
for the relaxation from plane-strain case. It is clear from this figure that
this simple second-order closure model does a reasonably good job in
reproducing the experimental trends, which show a gradual return to
isotropy (where u -~ 0asz -~ ~).Thisis in considerable contrast to eddy-
viscosity (or nonlinear algebraic stress) models, which erroneously predict

LRR Model
E~per£vt~em~al

RETURN TO [SOTROPY
0.2,0

015

0.10 o ~’~
0 o~0~00 ~ ~ ~ --

bfl

0.05

~_~

:~0.00

ba~
-0.05 - ~ .

0.10- o o~--

-o.~5F

_0.20I._ I I I
0.0 0.2 0,4 0.6 0.8 1,0

Figure 5 Time evolution of the anisotropy tensor for the return-to-isotropy problem:
comparison of the predictions of the Launder, Reece &: Rodi (LRR) model with the experi-
mental data of Choi & Lumley (1984) for the rclaxation from plane strain.
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that bu = 0 for z > 0! Further improvements can be obtained with second-
order closures based on nonlinear models for the slow pressure-strain
correlation. A simple quadratic model was recently proposed by Sarkar &
Speziale (1990) in which

~u¢u = - C ~bu + C2( bikbk~-- ½II6u), (85)

with C~ = 3.4 and C2 - 4.2. This model does a better job in reproducing
the trends of the Choi & Lumley (1984) experiment (see Figure 6). 
notably, the quadratic model (85) yields curved trajectories in the {-r/
phase space (where ~ = III 1/3, q = II ~/2) that are well within the range of
experimental data; any linear or quasi-linear model where C2 = 0
erroneously yields straight-line trajectories in the {-t/phase space, as is
clearly shown in Figure 6.

As alluded to earlier, second-order closure models perform far better
than eddy-viscosity models in rotating turbulent flows. To illustrate this

0.25

0.20

0.15

0.10

Qnd Lumley (1984)

0.00
0.00 0.02 0.04 0.06 0.08 O, 10

Figure 6 Phase-space portrait of the return-to-isotropy problem: comparison of the pre-
dictions of the LRR model and of the quadratic model of Sarkar & Speziale (1990) with the
experimental data of Choi & Lumley (1984) for the relaxation from plane strain.
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point, a comparison of the predictions of the standard K-e model and the
LRR model is now made for the problem of homogeneous turbulent shear
flow in a rotating frame. This problem represents a nontrivial test of
turbulence models, since a system rotation can have either a stabilizing or
a destabilizing effect on turbulent shear flow. We focus here on the most
basic type of plane shear flow in a rotating frame, in which

Ox~
0 ,

0

~, = (0, 0, f~) (86)

(see Figure 7). For the case of pure shear flow (f~ = 0), the LRR model
yields substantially improved predictions over the K-e model for the equi-
librium values of bq and SK/e, as shown in Table 1. Since the standard K-
e model is frame indifferent, it erroneously yields solutions for rotating
shear flow that are independent offL Second-order closure models, on the
other hand, yield rotationally dependent solutions owing to the effect of
the Coriolis acceleration. For any homogeneous turbulent flow in a rotat-
ing frame, second-order closure models take the form (cf Speziale 1989)

vo = -- Zik OX~ -- zjk ~X~Xk + FIi;- ei~-- 2(Z~ke,.kjfL. (87)

where the mean-vorticity tensor ~q in the model for~q [see Equation (78)]
is replaced with the intrinsic mean-vorticity tensor Wo defined in (32). The
equations of motion for the LRR model are obtained by substituting (86)
into (87) and the modeled e-transport equation

(88)

Figure 7 Homogeneous shear flow in a
rotating frame.
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Table 1 Comparison of the predictions of the standard K-
e model and the Launder, Reece & Rodi (LRR) model
with the experiments of Tavoularis & Corrsin (1980 on
homogeneous shear flow

Equilibrium Standard LRR
values K-~ model model Experiments

(b~)~ 0 0.193 0.201

(b22)~ 0 -0.096 -0.147

(b~2)o~ -0.217 -0.185 -0.150
(SK#.)oo 4.82 5.65 6.08

145

which is not directly affected by rotations. A complete dynamical-systems
analysis of these nonlinear ordinary differential equations--which are
typically solved for initial conditions that correspond to a state ofisotropic
turbulence--was conducted recently by Speziale & Mac Giolla Mhuiris
(1989a). It was found that e/SK and bij have bounded equilibrium values
that are independent of the initial conditions and only depend on f~ and
S through the dimensionless ratio f~/S. There are two equilibrium solutions
for (e/SK)~: one where (e/SK)® = O, which exists for all f~/S; and one
where (e/SK)~ > 0, which only exists for an intermediate band of f~/S (see
Figure 8a). The trivial equilibrium solution is predominantly associated
with solutions for K and e that undergo a power-law decay with time; the
nonzero equilibrium solution (ellipse ACB on the bifurcation diagram
shown in Figure 8a) is associated with unstable flow wherein K and 
undergo an exponential time growth at the same rate. The two solutions
exchange stabilities in the interval AB (i.e. this is a degenerate type of
transcritical bifurcation). In stark contrast to these results, the standard
K-e model erroneously predicts the same equilibrium value for (~/SK)~
independent of ~/S (see Figure 8b). In Figures 9a-c, the time evolution
of the turbulent kinetic energy predicted by the standard K-e model and
the LRR model are compared with the large-eddy simulations of Bardina
et al (1983). It is clear that the second-order closure model is able 
properly account for the stabilizing or destabilizing effect of rotations on
shear flow, whereas the K-e model (as well as the nonlinear K-e model,
whose predictions are almost identical for rotating shear flow) erroneously
predicts results that are independent of the rotation rate f~. The LRR model
predicts that there is unstable flow (where K and e grow exponentially)
only for rotation rates lying in the intermediate range -0.1 < ~/S < 0.39,
whereas linear-stability analyses indicate unstable flow for 0 < f~/S <_ 0.5.
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Figure 8

model

SPEZIALE
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0.0

-0.1

--0.2

-0.3
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Bifurcation diagram for rotating shear flow: (a) LRR model; (b) standard 

Similar improved results using second-order closures have been recently
obtained by Gatski & Savill (1989) for curved homogeneous shear flow.

Finally, an example of an inhomogcneous wall-bounded turbulent flow
is given. The problem of rotating channel flow recently considered by
Launder et al (1987) represents a challenging example. In this problem 
turbulent channel flow is subjected to a steady spanwisc rotation (see
Figure 10). Physical and numerical experiments (see Johnston et al 1972,
Kim 1983) indicate that Coriolis forces arising from a system rotation
cause the mean-velocity profile 5(y) to become asymmetric about the
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Figure 9 Time evolution of the turbulent kinetic energy in rotating shear flow for
zo/SKo = 0.296: (a) standard K-e model; (b) LRR model; and (c) large-eddy simulations
(LES) of Bardina et al (1983).

channel centerline. In Figure 11, the mean-velocity profile computed by
Launder et al (1987) using the Gibson & Launder (1978) second-order
closure model is compared with the results of the K-~ model and the
experimental data of Johnston et al (1972) for a Reynolds number
Re = 11,500 and a rotation number Ro = 0.21. From this figure, it is clear
that the second-order closure model yields a highly asymmetric mean-
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Fiyure 10 Fully developed turbulent channel flow in a rotating frame.

velocity profile that is well within the range of the experimental data.
The standard K-e model erroneously predicts the same symmetric mean-
velocity profile as in an inertial frame (where ~ = 0), as shown in Figure
11. Comparable improvements in the prediction of curved turbulent shear
flows have been obtained by Gibson & Rodi (1981) and Gibson & Younis
(1986) using second-order closure models. Likewise, turbulent flows

1.0

~/~o
0.6

0.4

0.2

D experimental dat~ ~

~ Second-order clonure model El

---- K-¢model

0 0.2 0.4 0.6 0.8 1,0

¥/D
Figure 11 Comparison of the mean-velocity predictions of the second-order closure model
of Gibson & Launder (1978) and the standard K-~, model with the experimental data 
Johnston et al (1972) on rotating channel flow (partially taken from Launder et al 1987).
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involving buoyancy effects have been shown to be better described by
second-order closure models (cf Zeman & Lumley 1976, 1979). In these
problems, the Coriolis terms on the right-hand side of the Reynolds-stress
transport equation (87) are replaced with the body-force term

fl( giT’ uj + g jT’ u~), (89)

where fl is the coefficient of thermal expansion, and #i is the acceleration
due to gravity. The temperature-velocity correlation T’u~ (also called the
Reynolds heat flux) is modeled by a gradient transport hypothesis or is
obtained from a modeled version of its transport equation.

While second-order closure models constitute, by far, the most promis-
ing approach in Reynolds-stress modeling, it must be said that they have
not progressed to the point where reliable quantitative predictions can be
made for a variety of turbulent flows. To illustrate this point, we again
cite the case of rotating shear flow. As shown earlier, the phase-space
portrait of second-order closures is far superior to that of any two-equation
model of the eddy-viscosity type (i.e. the second-order closures properly
predict that there is unstable flow only for an intermediate band of rotation
rates; see Figure 8). However, the specific quantitative predictions of 
wide variety of existing second-order closures were recently shown by
Speziale et al (1989) to be highly contradictory in rotating shear flow for
a significant range of f~/S (see Figure 12). Comparable problems with the
reliability of predictions when second-order closure models are integrated
directly to a solid boundary persist, so that a variety of modifications--
which usually involve the introduction of empirical wall damping that
depends on the turbulence Reynolds number as well as the unit normal to
the wall--continue to be proposed along alternative lines (cf Launder
& Shima 1989, Mansour & Shih 1989, Lai & So 1990, Shih & Mansour
1990).

In the opinion of the present author, there are two major areas of
development that are badly needed in order to improve the predictive
capabilities of second-order closures:

1. The introduction of improved transport models for the turbulence
length scale that ineorporate at least some limited two-point and direc-
tional information (e.g. through some appropriate integral of the two-
point velocity correlation tensor R~-). In conjunction with this research,
the use of gradient transport models should be reexamined. Although
Donaldson & Sandri (1981) developed a tensor length scale along these
lines, it was recently shown by Speziale (1990) that the specific form 
the model that they chose can be collapsed to the standard e-transport
model in homogeneous flows.
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LKS o FL~ - - -

LRR -- -- RNC --
RK ........ SL
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Figure 12 Comparison of the predictions of a variety of secondiorder closure models

for the time evolution of the turbulent kinetic energy in rotating shear flow; ~/S = 0.25,
eo/SKo = 0.296. LES --- large-eddy simulations of Bardina et al (1983); LRR ~ Launder,
Reeee & Rodi model; RK--Rotta-Kolmogorov model of Meller & Herring (1973);
FLT -- Fu, Launder & Tselepidakis (1987) model; RNG _= Renormalization Group model
of Yakhot & Orszag (1986); SL = Shih & Lumley (1985) model.

2. The need for asymptotically consistent low-turbulence-Reynolds-num-
ber extensions of existing models that can be robustly integrated to a
solid boundary. Existing models use ad hoc damping functions based
on Ret and have an implicit dependence on the unit normal to the wall
that does not allow for the proper treatment of geometrical dis-
continuities such as those that occur in the square duct or back-step
problems. Furthermore, the nonlinear effect of both rotational and
irrotational strains need to be accounted for in the modeling of near-
wall anisotropies in the dissipation.

In addition, the neglect of nonlocal and history effects in the commonly
adopted models (74)-(75) for the pressure-strain correlation needs to 
seriously reexamined. It has long been known that nonlocal effects can be
quite important in strongly inhomogeneous turbulent flows. Furthermore,
some inconsistencies that these algebraic models give rise to in rotating
homogeneous turbulent flows have recently surfaced that appear to be due
to the neglect of history effects in the rapid pressure-strain terms (see
Reynolds 1989, Speziale et al 1990).

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


REYNOLDS-STRESS CLOSURES 151

CONCLUDING REMARKS

There has been a tendency to be overly pessimistic about the progress
made in Reynolds-stress modeling during the past few decades. It must be
remembered that the first complete Reynolds-stress models--cast in tensor
form and supplemented only with initial and boundary conditions--were
developed less than 20 years ago. Progress was at first stymied by the lack
of adequate computational power to properly explore full Reynolds-stress
closures in nontrivial turbulent flows--a deficiency that was not overcome
until the late 1960s. Then, by 1980--with an enormous increase in com-
puter capacity efforts were shifted toward direct and large-eddy simu-
lations of the Navier-Stokes equations. Furthermore, the interest in coher-
ent structurcs (ef Hussain 1983) and in alternative theoretical approaches
based on nonlinear dynamics (e.g. period-doubling bifurcations as a route
to chaos; cf Swinney & Gollub 1981) that crystallized during the late 1970s
has also diverted attention away from Reynolds-stress modeling, as well
as away from the general statistical approach for that matter. While
progress has been slow, this is due in large measure to the intrinsic com-
plexity of the problem. The fact that real progress has been made, however,
cannot be denied. Many of the turbulent flows considered in the last
section--which were solved without the ad hoc adjustment of any con-
stants--could not be properly analyzed by the Reynolds-stress models
that were available before 1970.

Some discussion is warranted concerning the goals and limitations of
Reynolds-stress modeling. Under the best of circumstances, Reynolds-
stress models can only provide accurate information about first and second
one-point moments (e.g. the mean velocity, mean pressure, and turbulence
intensity), which usually is all that is needed for design purposes. Since
Reynolds-stress modeling constitutes a low-order one-point closure, it
intrinsically cannot provide detailed information about flow structures.
Furthermore, since spectral information needs to be indirectly built into
Reynolds-stress models, a given model cannot bc cxpectcd to perform well
in a variety of turbulent flows where the spectrum of the energy-containing
eddies is changing dramatically. However, to criticize Reynolds-stress
models purely on the grounds that they are not based directly on solutions
of the full Navier-Stokes equations would be as simplistic as criticizing
exact solutions of the Navier-Stokes equations for not being rigorously
derived from the Boltzmann equation or, for that matter, from quantum
mechanics. The more appropriate question is whether or not a Reynolds-
stress model can be developed that will provide adequate engineering
answers for the mean velocity, mean pressure, and turbulence intensities
in a significant range of turbulent flows that are of technological interest.
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TO obtain accurate predictions for these quantities in all possible turbulent
flows will probably require nothing short of solving the full Navier-Stokes
equations. Such a task will not be achievable in the foreseeable future, if
ever at all (cfHussaini et al 1990, Reynolds 1990). To gain an appreciation
for the magnitude of this task, consider the fact that economically feasible
direct simulations of turbulent pipe flow at a Reynolds number of
500,000--a turbulent flow that, although nontrivial, is far from the most
difficult encountered--would require a computer that is l0 million times
faster than the Cray YMP!

While second-order closures represent the most promising approach in
Reynolds-stress modeling, much work remains to be done. The two prob-
lem areas mentioned in the previous section--namely, the development of
transport models for an anisotropic integral length scale and the develop-
ment of more asymptotically consistent methods for the integration of
second-order closures to a solid boundary--are of utmost importance. In
fact, the issue of near-wall modeling is so crucial that deficiencies in
it along with associated numerical stiffness problems--are primarily
responsible for the somewhat misleading critical evaluations of second-
order closures that arose out of the 1980-81 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows (see Kline et al 1981). Another
area that urgently needs attention is the second-order closure modeling of
compressible turbulent flows. Until recently, most compressible second-
order closure modeling has consisted of Favre-averaged, variable-density
extensions of the incompressible models (cf Cebeci & Smith 1974).
However, with the current thrust in compressible second-order modeling
at NASA Langley and NASA Ames, some new compressible modeling
ideas--such as dilatational dissipation--have come to the forefront (see
Sarkar et al 1989, Zeman 1990). Much more work in this area is needed,
however.

Reynolds-stress modeling should continue to steadily progress, comple-
menting numerical simulations of the Navier-Stokes equations and alter-
native theoretical approaches. In fact, with anticipated improvements in
computer capacity, direct numerical simulations should begin to play a
pivotal role in the screening and calibration of turbulence models. The
recent work on Reynolds-stress budgets at NASA Ames constitutes an
excellent example of this (see Mansour et al 1988). Furthermore, from the
theoretical side, statistical mechanics approaches such as RNG could be
of considerable future use in the formulation of new models. (Unfor-
tunately, at their current stage of development, it does not appear that
they can reliably calibrate turbulence models for use in complex flows.)
Although Reynolds-stress models provide information only about a lim-
ited facet of turbulence, this information can have such important scientific
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and engineering applications that these models are likely to remain a part
of turbulence research for many years to come.

ACKNOWLEDGMENTS

The author would like to thank Drs. T. B. Gatski, N. Mac Giolla Mhuiris,
and S. Sarkar for their assistance with some of the computations presented
in this paper. Helpful comments by Drs. M. Y. Hussaini, J. H. Ferziger,
and J. L. Lumley are also gratefully acknowledged. This research was
supported under NASA Contract NAS1-18605 while the author was in
residence at ICASE.

Literature Cited

Avva, R. K., Kline, S. J., Ferziger, J. H.
1988. Computation of the turbulent flow
over a backward-facing step using the
zonal modeling approach. Rep. No. TF-
33, Stanford Univ., Stanford, Calif.

Baldwin, B. S., Lomax, H. 1978. Thin layer
approximation and algebraic model for
separated turbulent flows. AIAA Pap. No.
78-257

Bardina, J., Ferziger, J. H., Reynolds, W. C.
1983. Improved turbulence models based
on large-eddy simulation of homo-
geneous, incompressible turbulent flows.
Rep. No. TF-19, Stanford Univ., Stanford,
Calif.

Bardina, J., Ferziger, J, H., Rogallo, R. S.
1985. Effect of rotation on isotropic tur-
bulence: computation and modeling. J.
FluM Mech. 154:321-36

Bernard, P. S., Berger, B. S. 1982. A method
for computing three-dimensional tur-
bulent flows. SIAM J. Appl. Math. 42:
453-70

Bertoglio, J. P. 1982. Homogeneous tur-
bulent field within a rotating frame. AIAA
J. 20:1175-81

Boussinesq, J. 1877. Th6orie de l’6coulement
tourbillant. M~rn. Pr~sent~s par divers
Savants Acad. Sci. Inst. Ft. 23:46-50

Bradshaw, P., Ferriss, D. H., Atwell, N. P.
1967. Calculation of boundary layer de-
velopment using the turbulent energy equa-
tion. J. Fluid Mech. 28:593-616

Bradshaw, P., Cebeci, T., Whitelaw, J. H.
1981. Enyineerin9 Calculation Methods for
Turbulent Flow. New York: Academic

Cebeci, T., Smith, A. M. O. 1968. A finite-
difference solution of the incompressible
turbulent boundary-layer equations by
an eddy viscosity concept. Proe. AROSR-
IFP-Stanford Conf Comput. of Turbul.
Boundary Layers, ed. S. J. Kline, M. V.

Morkovin, G. Sovran, D. S. Cockrell, 1:
346-55. Stanford, Calif: Stanford Univ.
Press

Cebeci, T., Smith, A. M. O. 1974. Analysis
of Turbulent Boundary Layers. New York:
Academic

Choi, K. S., Lumley, J. L. 1984. Return to
isotropy of homogeneous turbulence re-
visited. In Turbulence and Chaotic Phe-
nomena in Fluids, ed. T. Tatsumi, pp. 267-
72. New York: North-Holland

Clark, T. L., Farley, R. D. 1984. Severe
downslope windstorm calculations in two
and three spatial dimensions using an-
elastic interactive grid nesting: a possible
mechanism for gustiness. J. Atmos. Sci.
41:329-50

Comte-Bellot, G., Corrsin, S. 1971. Simple
Eulerian time correlation of full- and nar-
row-band velocity signals in grid-gener-
ated, "isotropic" turbulence. J. Fluid
Mech. 48:273-337

Craft, T., Fu, S., Launder, B. E., Tsele-
pidakis, D. P. 1989. Developments in
modeling the turbulent second-moment
pressure correlations. Rep. No. TFD/89/1,
Mech. Eng. Dep., Univ. Manchester Inst.
Sci. Technol. Engl.

Crow, S. C. 1968. Viscoelastic properties of
fine-grained incompressible turbulence, J.
Fluid Mech. 33:1-20

Daly, B. J., Harlow, F. H. 1970. Transport
equations in turbulence. Phys. Fluids 13:
2634-49

Deardorff, J. W. 1973. The use of subgrid
transport equations in a three-dimen-
sional model of atmospheric turbulence.
ASME J. Fluids Eng. 95:429 38

Demuren, A., Rodi, W. 1984. Calculation
of turbulence-driven secondary motion in
non-circular ducts. J. Fluid Mech. 140:
189-222

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


154 SPEZIALE

Donaldson, C. duP. 1972. Calculation of tur-
bulent shear flows for atmospheric and
vortex motions. AIAA J. 10:4-12

Donaldson, C. duP., Rosenbaum, H. 1968.
Calculation of the turbulent shear flows
through closure of the Reynolds equations
by invariant modeling. Rep. No. 127,
Aeronaut. Res. Assoc. Princeton, Prince-
ton, N.J.

Donaldson, C. duP., Sandri, (3. 1981. On the
inclusion of information on eddy structure
in second-order closure model of tur-
bulent flow. AGARD Rep. No. CP-308

Fu, S., Launder, B. E., Tselepidakis, D. P.
1987. Accommodating the effects of high
strain rates in modelling the pressure-
strain correlation. Rep. No. TFD/87/5,
Mech. Eng. Dep., Univ. Manchester Inst.
Sci. Technol., Engl.

Gatski, T. B., Savill, A. M. 1989. An analysis
of curvature effects for the control of wall-
bounded shear flows. AIAA Pap. No. 89-
1014

Gessner, F. B., Po, J. K. 1976. A Reynolds
stress model for turbulent corner flow--
Part II: comparisons between theory and
experiment. ASME J. Fluids Eng. 98: 269-
77

Gibson, M. M., Launder, B. E. 1978. Ground
effects on pressure fluctuations in the at-
mospheric boundary layer. J. Fluid Mech.
86:491-511

Gibson, M. M., Rodi, W. 1981. A Reynolds
stress closure model of turbulence applied
to the calculation of a highly curved mix-
ing layer. J. Fluid Mech. 103:161-82

Gibson, M. M., Younis, B. A. 1986. Cal-
culation of swirling jets with a Reynolds
stress closure. Phys. Fluids 29:38-48

Hanjalib, K., Launder, B. E. 1972. A Rey-
nolds stress model of turbulence and its
application to thin shear flows. J. Fluid
Mech. 52:609 38

Hanjali6, K., Launder, B. E. 1976. Con-
tribution towards a Reynolds stress clos-
ure for low Reynolds number turbulence.
J. Fluid Mech. 74:593-610

Hanjali6, K., Launder, B. E. 1980. Sen-
sitizing the dissipation equation to irrota-
tional strains. ASME J. Fluids Eng. 102:
34-40

Haworth, D. C., Pope, S. B. 1986. A gener-
alized Langevin model for turbulent flows.
Phys. Fluids 29:387-405

Hinze, J. O. 1975. Turbulence. New York:
Mc(3raw-Hill. 2nd ed.

Hussain, A. K. M. F. 1983. Coherent struc-
tures: reality and myth. Phys. Fluids 26:
2816-50

Hussaini, M. Y., Speziale, C. G., Zang, T.
A. 1990. Discussion of the potential and
limitations of direct and large-eddy simu-
lations. Proe. Whither Turbul. Workshop,

Ithaca, N.Y. Lect. Notes Phys., ed. J.
L. Lumley, pp. 354-68. Berlin: Springer-
Verlag

Johnson, D. A., King, L. S. 1984. A new
turbulence closure model for boundary
layer flows with strong adverse pressure
gradients and separation. AIAA Pap. No.
84-0175

Johnston, J. P., Halteen, R. M., Lezius, D.
K. 1972. Effects of a spanwise rotation
on the structure of two-dimensional fully-
developed turbulent channel flow. J. Fluid
Mech. 56:533-57

Kim, J. 1983. The effect of rotation on tur-
bulence structure. NASA TM-84379

Kim, J., Kline, S. J., Johnston, J. P. 1980.
Investigation of a reattaching turbulent
shear layer: flow over a backward-facing
step. ASME J. Fluids Eng. 102:302 8

Kline, S. J., Cantwell, B. J., Lilley, G. M.,
eds. 1981. Proceedings of the 1980-81
AFOSR-HTTM-Stanford Conference on
Complex Turbulent Flows. Stanford, Calif:
Stanford Univ. Press

Kolmogorov, A. N. 1942. The equations of
turbulent motion in an incompressible
fluid. Izv. Acad. Sci. USSR, Phys. 6: 56-
58

Kraichnan, R. H. 1964. Direct interaction
approximation for shear and thermally
driven turbulence. Phys. Fluids 7:1048 62

Lai, Y. G., So, R. M. C. 1990. On near wall
turbulent flow modeling. J. Fluid Mech.
In press

Launder, B. E. 1990. Phenomenological
inodeling: present and future. Proc. Whi-
ther Turbul. Workshop, Ithaca, N.Y. Lect
Notes Phys., ed. J. L. Lumley, pp. 439-85.
Berlin: Springer-Verlag

Launder, B. E., Reece, G. J., Rodi, W. 1975.
Progress in the development of a Rey-
nolds-stress turbulence closure. J. Fluid
Mech. 68:537-66

Launder, B. E., Shima, N. 1989. Second-
moment closure for the near-wall sub-
layer: development and application. AIAA
J. 27:1319-23

Launder, B. E., Spalding, D. B. 1974. The
numerical computation of turbulent flows.
Comput. Methods Appl. Mech. Eng. 3:
269-89

Launder, B. E., Tselepidakis, D. P., Younis,
B. A. 1987. A second-moment closure
study of rotating channel flow. J. Fluid
Mech. 183:63-75

Launder, B. E., Ying, W. M. 1972. Second-
ary flows in ducts of square cross-section.
J. Fluid Mech. 54:289 95

Lesieur, M. 1987. Turbulence in Fluids. Bos-
ton: Martinus Nijhoff

Lumley, J. L. 1970. Toward a turbulent
constitutive equation. J. Fluid Mech. 41:
413-34

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


Lumley, J. L. 1978. Computational model-
ing of turbulent flows. Adv. Appl. Mech.
18:123-76

Lumley, J. L. 1983. Turbulence modeling.
ASME J. Appl. Mech. 50:1097-1103

Lumley, J. L., Khajeh-Nouri, B. 1974. Com-
putational modeling of turbulent trans-
port. Adv. Geophys. 18A: 169-92

Mansour, N. N., Kim, J., Moin, P. 1988.
Reynolds stress and dissipation rate bud-
gets in turbulent channel flow. J. Fluid
Mech. 194:15~44

Mansour, N. N., Shih, T. H. 1989. Advance-
ments in turbulence modeling. In Forum
on Turbulent Flows--1989, ed. W. W.
Bower, M. J. Morris, FED-76: 129-41.
New York: ASME

Mellor, G. L., Herring, H. J. 1973. A survey
of mean turbulent field closure models.
AIAA J. 11:590-99

Mellor, G. L., Yamada, T. 1974. A hierarchy
of turbulence closure models for planetary
boundary layers. J. Atmos. Sci. 31:1791
1806

Moin, P., Kim, J. 1982. Numerical inves-
tigation of turbulent channel flow. J. Fluid
Mech. 118:341-77

Nisizima, S., Yoshizawa, A, 1987. Turbu-
lent channel and Couette flows using an
anisotropic K-~ model. AIAA J. 25: 414-
2O

Norris, L. H., Reynolds, W. C. 1975. Tur-
bulent channel flow with a moving wavy
boundary. Rep. No. FM-IO, Stanford
Univ., Stanford, Calif.

Orszag, S. A. 1970. Analytical theories of
turbulence. J. Fluid Mech. 41:363-86

Patel, V. C., Rodi, W., Scheuerer, G. 1985.
Turbulence models for near-wall and low
Reynolds number flows: a review. AIAA
J. 23:1308-19

Piomelli, U., Ferziger, J. H., Moin, P. 1987.
Models for large eddy simulations of tur-
bulent channel flows including transpira-
tion. Rep. No. TF-32, Stanford Univ., Stan-
ford, Calif.

Pope, S. B. 1975. A more general effective
viscosity hypothesis. J. Fluid Mech. 72:
33140

Pope, S. B. 1978. An explanation of the tur-
bulent round jet/plane jet anomaly. AIAA
J. 16:279-81

Pope, S. B. 1985. Pdf methods for turbulent
reactive flows. Prog. Energy Combust. Sci.
11:119-92

Prandtl, L. 1925. ~ber die ausgebildete Tur-
bulenz. ZAMM 5:136-39

Prandtl, L. 1945. Ober ein neues Formel-
system fiir die ausgebildete Turbulenz.
Naehr. Akad. Wiss. G6ttingen, Math.-
Phys. Kl. 1945:6-19

Reynolds, O. 1895. On the dynamical theory
of incompressible viscous fluids and the

REYNOLDS-STRESS CLOSURES 155
determination of the criterion. Philos.
Trans. R. Soc. London Set. A 186: 123-
64

Reynolds, W. C. 1976. Computation of tur-
bulent flows. Annu. Rev. Fluid Mech. 8:
183-208

Reynolds, W. C. 1987. Fundamentals of
turbulence for turbulence modeling and
simulation. In Lecture Notes for Von Kf~r-
m~n Institute. AGARD Lect. Ser. No. 86,
pp. 1~6. New York: NATO

Reynolds, W. C. 1989. Effects of rotation on
homogeneous turbulence. Proc. Australas.
Fluid Mech. Conf, lOth, pp. 1~5, Mel-
bourne: Univ. Melbourne

Reynolds, W. C. 1990. The potential and
limitations of direct and large-eddy simu-
lations. Proc. Whither Turbul. Workshop,
Ithaca, N.Y. Lect. Notes Phys., ed. J.
L. Lumley, pp. 313-42. Berlin: Springer-
Verlag

Rivlin, R. S. 1957. The relation between the
flow of non-Newtonian fluids and tur-
bulent Newtonian fluids. Q. Appl. Math.
15:212-15

Rodi, W. 1976. A new algebraic relation for
calculating the Reynolds stresses. ZAMM
56:T219-21

Rodi, W. 1980. Turbulence Models and Their
Application in HydrauBcs. Delft, Neth: lnt.
Assoc. Hydraul. Res.

Rogallo, R. S., Moin, P. 1984. Numerical
simulation of turbulent flows. Annu. Rev.
Fluid Mech. 16:99-137

Rotta, J. C. 1951. Statistische Theorie nich-
thomogener Turbulenz. Z. Phys. 129: 547-
72

Rotta, J. C. 1972. Recent attempts to de-
velop a generally applicable calculation
method for turbulent shear flow layers.
AGARD CP-93

Rubinstein, R., Barton, J. M. 1990. Non-
linear Reynolds stress models and the re-
normalization group. Phys. Fluids A 2:
1472-76

Saffman, P. G. 1977. Results of a two-equa-
tion model for turbulent flows and de-
velopment of a relaxation stress model
for application to straining and rotating
flows. Proc. Proj. SQUID Workshop Tur-
bul. in Intern. Flows, ed. S. Murthy, pp. 191-
23 I. New York: Hemisphere

Sarkar, S., Erlebacher, G., Hussaini, M. Y.,
Kreiss, H. O. 1989. The analysis and mod-
eling of dilatational terms in compressible
turbulence. Rep. No. 89-79, ICASE, NASA
Langley Res. Cent., Hampton, Va.

Sarkar, S., Speziale, C. G. 1990. A simple
nonlinear model for the return to isotropy
in turbulence. Phys. Fluids A 2:84-93

Schlichting, H. 1968. Boundary Layer The-
ory. New York: McGraw-Hill

Schumann, U. 1977. Realizability of Rey-

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



156 SPEZIALE

nolds stress turbulence models. Phys. Flu-
ids 20:721-25

Shih, T.-H., Lumley, J. L. 1985. Modeling
of pressure correlation terms in Reynolds
stress and scalar flux equations. Rep.
No. FDA-85-3, Cornell Univ., Ithaca,
N.Y.

Shih, T.-H., Mansour, N. N. 1990. Second-
order modeling of low Reynolds number
turbulence near walls. Submitted for pub-
lication

Smagorinsky, J. 1963. General circulation
experiments with the primitive equations.
Mon. Weather Rev. 91:99-165

Smith, G. F. 1971. On isotropic functions of
symmetric tensors, skew-symmetric ten-
sors and vectors. Int. J. Eng. Sci. 9: 899-
916

Smolarkiewicz, P. K., Clark, T. L. 1985.
Numerical simulation of a three-dimen-
sional field of cumulus clouds. Part I.
Model description, comparison with obser-
vations and scnsitivity studies. J. Atmos.
Sci. 42:502-22

Speziale, C. G. 1981. Some interesting prop-
erties of two-dimensional turbulence.
Phys. Fluids 24:142557

Speziale, C. G. 1983. Closure models for
rotating two-dimensional turbulence.
Geophys. Astrophys. Fluid Dyn. 23:69
84

Speziale, C. G. 1985. Modeling the pressure
gradient-velocity correlation of turbu-
lence. Phys. Fluids 28:69-71

Speziale, C. G. 1987a. Second-order closure
models for rotating turbulent flows. Q.
Appl. Math. 45:721 33

Speziale, C. G. 1987b. On nonliltear K-l and
K-e models of turbulence. J. Fluid Mech.
178:459-75

Speziale, C. G. 1989. Turbulence modeling
in non-inertial frames of reference. Theor.
Comput. Fluid Dyn. 1:3 19

Speziale, C. G. 1990. Discussion of tur-
bulence modeling: present and future. Proe.
Whither Turbid. Workshop, Ithaca, N.Y.
Leer. Notes Phys., ed. J. L. Lumley, pp.
490-512. Berlin: Springer-Verlag

Speziale, C. G., Gatski, T. B., Mac Giolla
Mhuiris, N. 1989. A critical comparison
of turbulence models for homogeneous
shear flows in a rotating frame. Proc.
Syrup. Turbul. Shear Flows, 7th, 2: 27.3.1-
27.3.6. Stanford, Calif: Stanford Uni-
versity Press

Speziale, C. G., Mac Giolla Mhuiris, N.
1989a. On the prediction of equilibrium
states in homogeneous turbulence. J. Fluid
Mech. 209:591~15

Speziale, C. G., Mac Giolla Mhuiris, N.
1989b. Scaling laws for homogeneous tur-
bulent shear flows in a rotating frame.
Phys. Fluids A 1:294-301

Speziale, C. G., Mansour, N. N., Rogallo,
R. S. 1987. The decay of isotropic tur-
bulence in a rapidly rotating frame. Proc.
Summer Program Cent. for Turbul. Res.,
ed. P. Moin, W. C. Reynolds, J. Kim, pp.
205-11. Stanford, Calif: Stanford Univ.
Press

Speziale, C. G., Ngo, T. 1988. Numerical
solution of turbulent flow past a back-
ward-facing step using a nonlinear K-~
model. Int. J. Eng. Sci. 26:1099-1112

Speziale, C. G., Sarkar, S., Gatski, T. B.
1990. Modeling the pressure-strain cor-
relation of turbulencc--an invariant dy-
namical systems approach. Rep. No. 90-
5, 1CASE, NASA Langley Res. Cent.,
Hampton, Va.

Swinney, H. L., Gollub, J. P., eds. 1981.
Hydrodynamic Instabilities and the Tran-
sition to Turbulence. New York: Springer-
Verlag

Tavoularis, S., Corrsin, S. 198 i. Experiments
in nearly homogeneous turbulent shear
flow with a uniform mean temperature
gradient. Part I. J. Fluid Mech. 104:311-
47

Taylor, G. I. 1915. Eddy motion in the atmo-
sphere. Philos. Trans. R. Soc. London Set.
A 215:1-26

Tennekes, H., Lumley, J. L. 1972. A First
Course in Turbulence. Cambridge, Mass:
MIT Press. 300 pp.

von K~rm~.n, T. 1930. Mechanische /ihn-
lichkeit und Turbulenz. Proc. Int. Congr.
Appl. Mech., 3rd, Stockholm, Pt. 1, pp.
85-105

von K~irm~n, T. 1948. Progress in the statis-
tical theory of turbulence. Proc. Natl.
Acad. Sei. USA 34:530-39

Weinstock, J. 1981. Theory of the pressure-
strain rate correlation for Reynolds stress
turbulence closures. Part 1. J. Fluid Mech.
105:369-96

Wigeland, R. A., Nagib, H. M. 1978. Grid-
generated turbulence with and withot~t
rotation about the streamwise direction.
Rep. No. R78-1, I11. Inst. Technol., Chica-
go

Wilcox, D. C. 1988. Reassessment of the
scale-determining equation for advanced
turbulence models. AIAA J. 26:1299
1310

Wilcox, D. C., Traci, R. M. 1976. A complete
model of turbulence. A1AA Pap. No. 76-
351

Wolfshtein, M. 1970. On the length scale of
turbulence equation, lsr. J. Technol. 8: 87-
99

Yakhot, V., Orszag, S. A. 1986. Renor-
malization group analysis of turbulence.
I. Basic theory. J. Sci. Comput. 1:3-51

Yoshizawa, A. 1984. Statistical analysis of
the deviation of the Reynolds stress from

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


its eddy viscosity representation. Phys.
Fluids 27:1377-87

Yoshizawa, A. 1987. Statistical modeling of
a transport equation for the kinetic energy
dissipation rate. Phys. Fluids 30:628-31

Zeman, O. 1990. Dilatation dissipation: the
concept and application in modeling com-
prcssiblc mixing layers. Phys. Fluids A 2:
178-88

REYNOLDS-STRESS CLOSURES 157
Zeman, O., Lumley, J. L. 1976. Modeling

buoyancy-driven mixed layers. J. Atmos.
Sci. 33:1974-88

Zeman, O., Lumley, J. L. 1979. Buoyancy
effects in entraining turbulent boundary
layers: a second-order closure study. In
Turbulent Shear Flows I, ed. F. Durst, B.
E. Launder, F. W. Schmidt, J. H. White-
law, pp. 295-302. Berlin: Springer-Verlag

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
1.

23
:1

07
-1

57
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

U
ta

h 
- 

M
ar

ri
ot

 L
ib

ra
ry

 o
n 

02
/1

9/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.




