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Lecture 9: Particle Coarsening: Ostwald Ripening 

Today’s topics 

• The thermodynamics and kinetics behind the particle coarsening. 
• Ostwald ripening is driven by the concentration gradient (kinetics factor for the diffusion) around 

the particle in comparison to the bulk matrix or medium (e.g., solvent or the solid substance). How 
such a concentration gradient depends on the particle size is the main topic of today. 

 

About Ostwald ripening 

• Ostwald ripening is an observed phenomenon in solid (or liquid) solutions which describes the 
evolution of an inhomogenous structure over time. The phenomenon was first described by 
Wilhelm Ostwald in 1896. When a phase precipitates out of a solid, energetic factors will cause 
large precipitates to grow, drawing material from the smaller precipitates, which shrink.  

• This thermodynamically-driven spontaneous process occurs because larger particles are more 
energetically stable than smaller particles (Lecture 8: internal pressure reversely proportional to 
the radius of the particles). This stems from the fact that molecules on the surface of a particle are 
energetically less stable than the ones already well ordered and packed in the interior. Large 
particles, with their lower surface to volume ratio, results in a lower energy state (and have a lower 
surface energy). As the system tries to lower its overall energy, molecules on the surface of a 
small (energetically unfavorable) particle will tend to detach and diffuse through solution and then 
attach to the surface of larger particle. Therefore, the number of smaller particles continues to 
shrink, while larger particles continue to grow --- Lecture 9. 

• As Lecture 9 tells us, Ostwald ripening is also a typical Kinetic process controlled by diffusion: 
concentration of the molecules around the interface of smaller particle is larger than the average 
concentration in bulk solution, resulting in net flux of molecules flowing from particle to the solution 
phase, leading to shrinking of the small particle. Reversely for the larger particle, where the local 
concentration around the interface is lower than average concentration in bulk solution, resulting 
in net flux of molecules flowing from the solution phase to the particle, thereby leading to growth of 
the large particle. à Ostwald ripening: Larger particles grow at the expenses of smaller 
particles. 

• Ostwald ripening is also observed in liquid-liquid systems. For example, in an oil-in-water 
emulsion polymerization, Ostwald ripening causes the diffusion of monomers from smaller to 
larger droplets due to greater solubility of the single monomer molecules in the larger monomer 
droplets. The rate of this diffusion process is linked to the solubility of the monomer in the 
continuous (water) phase of the emulsion. This can lead to the destabilization of emulsions (for 
example, by creaming and sedimentation).  

 
Background: 
Lecture 8:  ∆P = 2g/r --- pressure inside a sphere particle, à small particles, droplets or protrudes are not 
stable. So, what usually happen for these small particles or protrudes on surface during the phase 
transformation? Two ways:  
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1. fuse into other particles (or droplets) to form larger ones that possess lower energy, like you see in 
the case of small oil droplets in water. 

2. Dissolve themselves back to smaller clusters or even monomers (molecules or atoms), followed by 
depositing on the larger particles or flat or concave surfaces (wherever with lower surface energy). 
The result of such a process is smaller particles get smaller, while the larger ones get even larger. 
Growth of large particles at expense of small ones --- Ostwald ripening. 

 
The rate of Ostwald ripening is determined by concentration gradient around the particles, the latter is in turn 
depends on the particles size.  

• Basically, ∆P = 2g /r (Lecture 8) tells if a particle coarsening is thermodynamically favorable or not?  
• The concentration gradient to be deduced in this Lecture will tell us how fast (Kinetics) the particle 

coarsening can take place? 
 
Consider a two-component, two-phase alloy of A and B that is A-rich. For simplicity, assume A has negligible 
solubility in B. Shown below is a binary phase diagram of the system, where α phase is assumed to be dilute 
(solid) solution containing small fractions of β phase. Initially, the sample is a homogeneous, single phase α of 
composition with the concentration of B as C0. The alloy solution is then cooled to a temperature T1, at which 
the equilibrium concentration of B in α and β are respectively Cα and Cβ, where Cα < C0.  
 

 
Two assumptions to make:  

1. The interfacial energy, γαβ is isotropic so that precipitates are spherical β particles of various radius. 
2. The local equilibrium is established across the α/β interface. That is, the chemical potential of A and B 

in both α and β are about the same in the vicinity of α/β interface. µB
α=µB

β, µA
α=µA

β (They can’t be 
exactly same, otherwise no transport can occur across the interface.) Look at the case of oil-water two 
phase system, where the chemical potential of oil at both sides of the interface is approximately the same, 
or the difference is so slight that the cross-diffusion of oil is negligible. 
 
 
 
 
                                r —— radius of the β particle 
 
 

 

T 

A B C0 

β 

Cα 

α+β 

Cβ 

α 

T1 

α 

β 



3 
 

In the diagram above, each particle is under pressure, 

                                ∆P (r) =  

The free energy (G) vs. composition diagram at T1 can be drawn as below.   

--- Please refer to the basics of thermodynamics that you learned before for how to draw a molar free energy 

curve (G vs. concentration) for a binary phase system a/b, and its relationship with phase diagram, as well as 

how to get chemical potential µ of each of the two component A and B in the a and b phase.  

  

From this diagram, the common tangent construction and the intercepts give the chemical potential of A and B 

in the coexisting phases. When the β particle grows to be large, the surface energy contribution ( ) 

becomes negligible, and the curve of Gb(r) lowers down, approaching Gb(¥) --- as a result, the tangent point at 
the Gα curve (Cr, determined by the common tangent line between the Gα and Gb(r) curves) moves to the left to 
approach the value of Ca. Apparently, when the particle size is small, the concentration of B in α next to the β-
particle is greater than that next to a large β-particle (flat α/β interface), Cr > Ca 
 
Next we determine the relationship between Cr and Ca: 
 
As the β particle is a small sphere of radius “r”, its chemical free energy per mole is  

µB
β(r) = µB

β (∞) + VB
M         (1)   --- from last Lecture 

where is the interface energy of α/β phase, VB
M is the molar volume of B, r is the radius of β particle, and 

µB
β (∞) is the chemical potential of β particle of infinite radius (i.e., under a flat surface). 

 
As the concentration of B in α is small, we treat α as a dilute solution of B in A. Thus, for a flat interface (r=∞), 
µB

α (∞)= µB
0 + RT ln aB

α 

      = µB
0 + RT ln {γB

α(H) · !!
!!"!"
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where γB
α(H) is the Henrian activity coefficient and cA is the concentration of A in α.  

For a dilute solution of B in a phase, CA>>Cα, so 

µBa (∞) = µB
0 + RT ln {##

!(%)!!
!"

}     

Considering the local equilibrium at the α/β interface as discussed above, µB
β (∞) =µB

α (∞), then we have 

µB
β (∞) = µB

α (∞) = µB
0 + RT ln {##

!(%)!!
!"

}      (2)   

(chemical potential of B in b re-written as the one in a phase.) 
 
Similarly, for a β-particle of radius r, we have     

µB
α (r) = µB

0 + RT ln [γB
α(H) · !$

!$"!"
] = µB

0 + RT ln [##
!(%)!$
!"

]    (3) 

(where, again, for a dilute solution of B in a phase, CA>>Cr) 
For the β-particle of radius r, at the α/β interface, a local equilibrium s assumed, µB

β (r) =µB
α (r)     

Then  Eq. (1) = Eq. (3) à 

µB
β (∞) + = µB

0 + RT ln [##
!(%)!$
!"

]     (4) 

Replacing Eq. (2) into Eq. (4), we have, 

µB
0 + RT ln {##

!(%)!!
!"

} + = µB
0 + RT ln [##

!(%)!$
!"

] 

then we have: 

Cr = Cα exp [ ] 

The concentration of B in α next to a β particle of radius r is higher than that close to a β particle of a larger or 
an infinite radius (flat interface). This leads to a diffusion along concentration gradient, resulting in coarsening 
of particles. When r approaches ¥, Cr approaches Cα.  
 
Let us consider some typical values: 
    γαβ = 0.5 J/m2,  VB

M = 2.5 × 10-5 m3/mole  T=1000K 

If, r = 1 µm = 10-6 m, then ≈3×10-3 << 1,  exp[ ]≈1.003 

If, r = 0.01µm (or 10 nm), ≈0.3,   exp[ ]≈1.35 

Therefore, Cr is 35% larger when r is reduced from 1µm to 0.01µm (10 nm). 
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In general, we may use the following approximate expression: 

 Cr = Cα exp[ ] ≈ Cα [1 + ], as r is in the µm range  

Let  r  be the average radius of β particle, the average concentration of B in the α-matrix is  

     C = C ( r ) = Cα [1+ ] 

The concentration next to particles smaller than r is greater than C, and vise versa. The following show the 
variation of c from the surface of a particle into the matrix α. For r >r and r <r, respectively. 
 
 
                                      The flux of B flows from matrix (α) toward the particles 

 ( r > r). Thus the particle grows. 
 
 
 
 
 
 
 
                                    The flux of B flows from particle ( r < r) toward the matrix;  

the particle shrinks. 
                                      
 
 
Ostwald ripening: Larger particles grows at the expenses of smaller particles 

 
 

A case for further thinking:  
Assuming all the particles are initially formed at approximately the same size, how Ostwald ripening can play 
for such a case?  
--- this is the limiting case for Ostwald ripening, where people can make uniform size of nanoparticles and 
nanotubes. 
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