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Lecture 6: Diffusion in binary substitutional materials (alloys): 

Kirkendall Effect and Darken’s equation 

 

Today’s topics 

• Understand the basic concepts of vacancy, substitutional diffusion, Kirkendall effect and its 
implication in alloy practice. 

• What is the major difference between interstitial diffusion and substitutional diffusion in 
terms of “diffusion coefficient”. 

• Understand Darken’s equation and interdiffusion coefficient, .  

 
 
Short history: Although atomic diffusion in solids is far slower than that in gases and liquids, such 
diffusion does take place, and it is related to various processes such as recrystallization, 
precipitation, and oxidation (as we will learn throughout this course). The study of diffusion in 
solids was initiated just 100 years ago when Sir Roberts-Austen discovered the diffusion 
phenomenon of gold in solid lead in 1896.  

 
About vacancies: 

Vacancies are missing atoms in a crystal structure. For a perfect, pure crystal containing a mole of 
atoms (6.023×1023), there is only one distinguishable way in which the atoms can be arranged. The 
introduction of a single vacancy enables a very large number of alternative arrangements, thus 
causing great increase in configurational entropy (DS). This thermodynamically favors the 
formation of a vacancy. However, on the other hand, vacancies are defects and the associated 
defect energy (enthalpy of formation, DH) opposes their formation, i.e., DG=DH-TDS must be < 0. 
A compromise is reached whereby there is an equilibrium concentration of vacancies.  Thereby, a 
perfect crystal is unachievable in all practical circumstances! 

The equilibrium concentration of vacancies is typically 10-6, i.e., one in a million of the sites is 
vacant, at a temperature close to melting. Pairs of vacancies, called divacancies, also exist but at 
even lower concentrations. In platinum, the concentration of divacancies has been shown to be 
about 10% that of monovacancies. 

Mechanisms of Substitutional Atom Diffusion: 

Atoms can in principle migrate by exchanging the position directly, with the correlated motion of 
two adjacent atoms (see Figure 1 below). But this would entail very large local distortions in the 
crystal (large positive free energy change). These distortions can be reduced by the ring diffusion 
mechanism as shown in Figure 1 below, although this has the disadvantage that many atoms have 
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to move in a correlated manner.  The ring diffusion is common in liquids and amorphous solids 
which have more free space.   

 

There are many other mechanisms for substitutional diffusion, but the most obvious one involves 
atoms jumping into vacancy sites (see Figure 1, case c). However, this was not accepted as a viable 
mechanism for a long time because the concentration of vacancies was intuitively perceived to be 
too small to give perceptible diffusion. The Kirkendall experiment (in 1942) proves the existence 
of vacancy diffusion in the vast majority of metallic materials. This is a remarkable example of an 
experiment which is ingenious, simple and conclusive (see below). 

The Kirkendall effect 

Discovered in 1942, the Kirkendall effect describes what happens when two solids diffuse into 
each other at different rates. The boundary between two metals, zinc and copper for example, is 
formed by a growing layer of alloy -- brass, in this case -- which expands in the direction of the 
faster-moving species, zinc. The atoms of the two solids don't change places directly; rather 
diffusion occurs where voids open, making room for atoms to move in --- a vacancy diffusion. 

 
 
For a general case, the Kirkendall experiment considers a diffusion couple as illustrated below, 
between A and B, where the diffusion rates of the two species are different (|JA| > |JB|). Since the 
diffusion fluxes are different, there will be a net flow of matter past the inert markers, causing the 
couple to shift bodily with respect to the markers. This can only happen if diffusion is by a vacancy 
mechanism. A direct exchange mechanism does not allow the fluxes to be different. 
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The diffusion couple is created by welding together A and B, with intert markers placed at the weld 
junction. The markers are in the form of wires extending out of the diffusion couple and attached to 
the laboratory bench. The whole specimen therefore translates along the bench as diffusion 
proceeds because the flux of A is larger than that of B.  Given that there is a net flow of matter, 
there will be an equal and opposite net flow of vacancies which condense to form pores, as 
discussed depicted earlier above for the zinc-copper diffusion.   

About Kirkendall: The Kirkendall effect was named after Ernest Kirkendall (1914 - 2005). He 
discovered the effect in 1942. The Kirkendall effect has important practical consequences. One of 
these is the prevention or suppression of voids formed at the boundary interface in various kinds 
of alloy to metal bonding. Ernest Kirkendall was born in Michigan in 1914. He graduated from 
Wayne College (later Wayne University) in 1934, was awarded a master's degree in 1935 and a 
doctor of science in 1938 from the Metallurgy Department at the University of Michigan. He was 
an instructor at Wayne University from 1937 to 1941 and an assistant professor from 1941 to 
1946, during which time he published two milestone papers  
• E.O. Kirkendall, "Diffusion of Zinc in Alpha Brass," Trans. AIME, 147 (1942), pp. 104-110.  
• A.D. Smigelskas and E.O. Kirkendall, "Zinc Diffusion in Alpha Brass," Trans. AIME, 171 

(1947), pp. 130-142. 
From 1947 to 1965, he served as secretary of AIME; he then became a manager at the United 
Engineering Trustees. He concluded his career as a vice president of the American Iron and Steel 
Institute from 1966 and 1979.  

The above descriptions were referenced from:  

1 Prof. Harry Bhadeshia, phase transformation course website, Department of Materials 
Science & Metallurgy, University of Cambridge. 

2 Hideo Nakajima , The Discovery and Acceptance of the Kirkendall Effect: The Result of a 
Short Research Career, (the journal) JOM, 49 (6) (1997), pp. 15-19.  

Now let’s learn to understand the Kinetics of Kirkendall effect based on what we have already 
learned on the Fick’s law and diffusion coefficient: 



 4 

In general, DA ≠ DB  =>  DAC ≠ DBC,  and as learned from last Lecture,   

DAC = DA { 1 + }=DA{ 1 + } 

DBC = DB { 1 + }=DB{ 1 + } 

In a substitutional alloy, A & B move in the same lattice. Let’s consider a diffusion couple as 
follows. 
 

 
 
Let DA > DB, more A diffuses from left to right than B diffuses from right to left,  
therefore, vacancy must move from right to left. 

 
Grain boundary, crystalline defects (including dislocation) provide the source and sink for 
vacancies. See the additional reading for more about these basic concepts and application in 
real-world materials science and engineering.  
 
For example, an edge dislocation can be viewed as an extra partial atomic plane, atoms can be 
removed from or added to the end of the plane, creating or removing a vacancy. 

 
 
Vacancy flux from right to left à lattice plane move from left to right. 
Vacancy is created on the left by removing atomic plane. 
Vacancy is removed on the right by adding atomic plane. 

ð Atomic plane move from left to right. 
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The flux of A has two contributions: 

① diffusive flux relative to lattice, JA = -DAC  

② a flux due to moving of lattice plane v·cA   

    (where v is the lattice velocity, in unit of length/time) 
Then,  

JA = -DAC  + cA · v           

Similarly,   JB = -DBC  + cB· v 

 
Assume: cA + cB = const. 
 
In the zone far away from diffusion interface (region), JA + JB = 0 (JA = -JB) 
So,  

-DAC  + cA · v - DBC  + cB· v = 0 

Then, (cA + cB) v = DAC + DBC  

Since, = -    (cA + cB = const), we have 

(cA + cB) v = [DAC - DBC] = [DBC - DAC]  

 
Then, we have Lattice velocity:   

v = · = ·     (1) 

 
now, we have flux of A:   

JA = -DAC  + cA · v 
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= -DAC  + cA · ·  

= ·  

= - [xB DAC + xA DBC] ·  

Similarly,  

JB = - [xA DBC + xB DAC] ·  

 

Let’s introduce the interdiffusion coefficient,   

= xA DBC + xB DAC   

Now, we have 

JA = -  ,       JB = -   

From Lecture 5:   DA
C = DA {1+ }, DB

C = DB {1+ } 

and  { 1 + } = { 1 + } =  =  

 
Then, we have 

 = xA DBC + xB DAC  

   = [xA DB + xB DA] {1 + } = [xA DB + xB DA] {1 + }   (2) 

   = [xA DB + xB DA] = [xA DB + xB DA]    (3) 

This is referred to as Darken’s equation. 
 
With Darken’s equation, the diffusion coefficient of A and B are correlated together, reflecting the 
‘cooperative’ diffusion in substitutional alloys, for example as illustrated above in Kirkendall 
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experiment performed on the zinc-copper alloy diffusion. The interdiffusion coefficient  is 

determined by both the diffusion coefficient of A and B, whereas in the case of interstitial 
diffusion as discussed in the last a few lectures, the diffusion coefficient as used in the Fick’s law 
is determined only by that of A or B.  
 
Interstitial diffusion occurs in some solid crystals, like germanium and silicon, wherein the 
diamond cubic crystal structure possesses a lot of free space, and the atoms may be forced into 
interstitial positions during diffusion. 
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