Lecture 27: Diffusion of lons: Part 2: coupled diffusion of cations and

anions as described by Nernst-Planck Equation

Today's topics

- Continue to understand the fundamental kinetics parameters of diffusion of ions within an electrically neutral system (liquid or solid), including diffusion coefficient, diffusion flux, and compare these parameters with those we previously developed for the neutral systems of atoms or molecules, aiming to see how the electrostatic potential established with the ions affect the diffusion kinetics.
- Further understanding of the harmony diffusion of A-ions and the counter ions (B-ions) for a neutral system of $A_{a} B_{b}$: how to deduce the Nernst-Planck equation, and understand the coupled (in harmony) diffusion coefficient, $D_{A_{a} B_{b}}$.
- Local internal electrical field, as defined as $\mathrm{E}=\mathrm{d} \Phi / \mathrm{dx}$, can be built up if the diffusion coefficient of A and B ions are different, that is $D_{A} \neq D_{B}$.

In last lecture:

We learned how to deduce the diffusion flux for ions, specifically the A-ions and B-ions for a neutral system $\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$, which can be, for example, a salt like $\mathrm{CaCl}_{2}(\mathrm{a}=1, \mathrm{~b}=2)$ dissolved in a medium (e.g., water), where it dissociates into free ions: one cation Ca^{2+}, and two anion Cl^{-}, diffusing in the aqueous medium.

The process of dissociation of $A_{a} B_{b}$ is usually referred as ionization, as written as

$$
A_{a} B_{b} \rightleftharpoons a A^{Z_{c}}+b B^{Z_{a}}
$$

where Z_{c} and Z_{a} are the valences of A-ion (cation) and B-ion (anion) respectively.
Note that $Z_{c}>0$ but $Z_{a}<0$, and $\frac{Z_{c}}{Z_{a}}=-\frac{b}{a}$.
The potential around an individual ion is now consisted of both the regular 'chemical potential' (as marked as μ) and the 'electrical potential' (as marked as Φ) built up by the electrical charge; and this combined potential is usually referred as 'electrochemical potential' as marked as " η ". Here for the A and B ions, we have:
$\eta_{A}=\mu_{A}+Z_{c} e \Phi$ and $\eta_{B}=\mu_{B}+Z_{a} e \Phi$
Diffusion of $A_{a} B_{b}$ (actually A and B ions) in the medium is regarded as a coupled diffusion of $A_{a} B_{b}$ wherein ' a ' number of cations move in harmony with ' b ' number of anions, so as to maintain electroneutrality within the system (in other words, no electrostatic potential created, otherwise the free energy will increase).

For the "coupled (harmony) diffusion" as assumed above, we have derived the diffusion flux for A and B ions:

$$
\begin{align*}
& J_{A}=-\frac{D_{A} a C}{k_{B} T} \cdot \frac{d \eta_{A}}{d x}=-\frac{D_{A} a C}{k_{B} T} \cdot\left[\frac{d \mu_{A}}{d x}+Z_{c} \cdot e \frac{d \Phi}{d x}\right] \tag{1}\\
& =\frac{Z_{a} D_{A} D_{B} a b C}{k_{B} T\left[Z_{c}^{2} D_{A} a+Z_{a}^{2} D_{B} b\right]} \cdot\left[Z_{c} \cdot \frac{d \mu_{B}}{d x}-Z_{a} \cdot \frac{d \mu_{A}}{d x}\right] \\
& J_{B}=-\frac{D_{B} a C}{k_{B} T} \cdot \frac{d \eta_{B}}{d x}=-\frac{D_{B} a C}{k_{B} T} \cdot\left[\frac{d \mu_{B}}{d x}+Z_{a} \cdot e \frac{d \Phi}{d x}\right] \tag{2}\\
& =-\frac{Z_{c} D_{A} D_{B} a b C}{k_{B} T\left[Z_{c}^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left[Z_{c} \cdot \frac{d \mu_{B}}{d x}-Z_{a} \cdot \frac{d \mu_{A}}{d x}\right]
\end{align*}
$$

Where the D_{A} and D_{B} are the diffusion coefficient of A and B ion, respectively, and C is the concentration of the dissolved salt $\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$.

From the two equations above, we have
$\frac{J_{A}}{J_{B}}=-\frac{Z_{a}}{Z_{c}}$,
or $Z_{c} J_{A}+Z_{a} J_{B}=0$, as indeed consistent with the 'coupled'diffusion flux of A and B ions as discussed above, where the diffusion of A is in harmony with (or neutralized by) the diffusion of B.
also considering the electroneutrality of $\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$, we have $\frac{\mathrm{Z}_{c}}{\mathrm{Z}_{a}}=-\frac{b}{a}$, where $\mathrm{Z}_{\mathrm{c}}>0, \mathrm{Z}_{a}<0$
then we have, $\frac{J_{A}}{a}=\frac{J_{B}}{b}$
defining $\frac{J_{A}}{a}=\frac{J_{B}}{b}=J_{A_{a} B_{b}}$
This implies that when ' a ' A-ions and ' b ' B-ions move in harmony, it is as if one $A_{a} B_{b}$ molecule moves. Now let's understand this harmony through the following treatment.

Recalling the assumption we made for the ionization equilibrium, which remains during the diffusion:
$a A^{Z_{c}}+b B^{Z_{a}} \rightleftharpoons A_{a} B_{b}$

That means, $a \mu_{A}+b \mu_{B}=\mu_{A_{a} B_{b}}$

Where $\mu_{A_{b} B_{b}}$ is the chemical potential of $\mathrm{A}_{a} \mathrm{~B}_{\mathrm{b}}$. Note that $\mathrm{A}_{a} \mathrm{~B}_{\mathrm{b}}$ is electrically neutral.

Differentiating the above equation, $a \frac{d \mu_{A}}{d x}+b \frac{d \mu_{B}}{d x}=\frac{d \mu_{A_{a} B_{b}}}{d x}$

Again, considering $\frac{Z_{c}}{Z_{a}}=-\frac{b}{a}$

We can have $Z_{c}=b \cdot \alpha$ and $Z_{a}=-a \cdot \alpha$, where α is a positive integer.
For example: for salts like $\mathrm{KCl}, \mathrm{CaCl}_{2}, \alpha=1$; for salts like $\mathrm{MgSO}_{4}, \alpha=2$.
Thus, timing the both side of Eq. (3) with α, we have
$\alpha a \cdot \frac{d \mu_{A}}{d x}+\alpha b \cdot \frac{d \mu_{B}}{d x}=\alpha \cdot \frac{d \mu_{A B B_{b}}}{d x}$
Or, $-Z_{a} \cdot \frac{d \mu_{A}}{d x}+Z_{c} \cdot \frac{d \mu_{B}}{d x}=\alpha \cdot \frac{d \mu_{A_{b} B_{b}}}{d x}$
The left-hand side is the term in parenthesis [] in equations (1) and (2).

Substituting Eq. (4) into Eqs. (1) and (2), we have
$J_{A}=\frac{Z_{a} D_{A} D_{B} a b C}{k_{B} T\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot \alpha \cdot \frac{d \mu_{A B B_{0}}}{d x}$
Or,
$J_{A}=-\frac{Z_{a} C}{k_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left[-\frac{d \mu_{A_{B} B_{c}}}{d x}\right]$

The same way, we have,

$$
\begin{equation*}
J_{B}=\frac{Z_{c} C}{k_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left[-\frac{d \mu_{A_{a} B_{B}}}{d x}\right] \tag{6}
\end{equation*}
$$

now

$$
\begin{equation*}
\frac{J_{A}}{a}=-\frac{Z_{a}}{a} \frac{C}{k_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left\{-\frac{d \mu_{A_{a} B_{b}}}{d x}\right\} \tag{7}
\end{equation*}
$$

With $\frac{Z_{a}}{a}=-\alpha$
Then, $\frac{J_{A}}{a}=\frac{C}{k_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha^{2}}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left\{-\frac{d \mu_{A_{a} B_{b}}}{d x}\right\}$

The same way,
$\frac{J_{B}}{b}=\frac{C}{K_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha^{2}}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left\{-\frac{d \mu_{\mathrm{A}_{a} B_{b}}}{d x}\right\}$
Now, from Eqs. (7) and (8), we have indeed seen that
$\frac{J_{A}}{a}=\frac{J_{B}}{b}=J_{A_{a} B_{b}}$
--- again, when ' a ' A-ions and ' b ' B-ions move in harmony, it is as if one $A_{a} B_{b}$ molecule moves.
so, $J_{A_{a} B_{b}}=C \frac{1}{K_{B} T} \cdot \frac{D_{A} D_{B} a b \alpha^{2}}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot\left\{-\frac{d \mu_{A_{B} B_{b}}}{d x}\right\}$

Let's write

$$
\begin{equation*}
D_{A_{B} B_{b}}=\frac{D_{A} D_{B} a b \alpha^{2}}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \tag{10}
\end{equation*}
$$

The above is known as the Nernst-Planck equation. $D_{A_{a} B_{b}}$ is the diffusion coefficient of $\mathrm{A}_{a} \mathrm{~B}_{\mathrm{b}}$ in the medium under consideration. It is apparently related to the individual ionic diffusion coefficients, can thus be regarded as a parameter reflecting the 'coupled' diffusion of A and B ions.

Taking $D_{A_{a} B_{b}}$ as defined in Eq. (10), the diffusion flux for $\mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}$ in general can be given by

Where $C_{A_{a} B_{b}}=C, D_{A_{a} B_{b}}=\frac{D_{A} D_{B} a b \alpha^{2}}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]}, \mu_{A_{a} B_{b}}=a \mu_{A}+b \mu_{B}$, as defined above, respectively.

Considering two extreme conditions:

- if $\mathrm{D}_{\mathrm{A}} \gg \mathrm{D}_{\mathrm{B}}, D_{A_{a} B_{b}}=\frac{D_{B} a b \alpha^{2}}{Z_{c}^{2} a}=\frac{D_{B}}{b}$
- if $\mathrm{D}_{\mathrm{B}} \gg \mathrm{D}_{\mathrm{A}}, D_{\mathrm{A}_{a} B_{b}}=\frac{D_{A} a b \alpha^{2}}{Z_{a}^{2} b}=\frac{D_{A}}{a}$

Let us now return to the equation for the potential gradient $\frac{d \Phi}{d x}$ given by the equation we developed in last lecture,

$$
\begin{equation*}
\frac{d \Phi}{d x}=-\frac{\left[Z_{c} D_{A} a \cdot \frac{d \mu_{A}}{d x}+Z_{a} D_{B} b \frac{d \mu_{B}}{d x}\right]}{e\left[Z_{c}^{2} D_{A} a+Z_{a}^{2} D_{B} b\right]} \tag{12}
\end{equation*}
$$

For dilute solution of $\mathrm{A}_{a} \mathrm{~B}_{\mathrm{b}}$ as assumed above, we have
$\mu_{A}=\mu_{A}{ }^{0}+k_{B} T \ln C_{A}=\mu_{A}{ }^{0}+k_{B} T \ln [a C]$
$\mu_{B}=\mu_{B}{ }^{0}+k_{B} T \ln C_{B}=\mu_{B}{ }^{0}+k_{B} T \ln [b C]$
The above assumption is not completely true, even for dilute solutions. However, we will use it for simplicity.

Then,
$\frac{d \mu_{\mathrm{A}}}{d x}=\frac{k_{B} T}{C} \cdot \frac{d c}{d x}$
$\frac{d \mu_{B}}{d x}=\frac{k_{B} T}{C} \cdot \frac{d c}{d x}$
So, Eq. (12) can be re-written as

$$
\begin{aligned}
\frac{d \Phi}{d x} & =-\frac{\left[Z_{c} D_{A} a \cdot \frac{d \mu_{A}}{d x}+Z_{a} D_{B} b \frac{d \mu_{B}}{d x}\right]}{e\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \\
& =-\frac{\left(Z_{c} D_{A} a+Z_{a} D_{B} b\right)}{e\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot \frac{k_{B} T}{C} \cdot \frac{d c}{d x}
\end{aligned}
$$

Remember $Z_{a}=-\alpha a, Z_{c}=\alpha b$, so, $Z_{c} a=\alpha a b, Z_{a} b=-\alpha a b$
Substituting both $Z_{c} a$ and $Z_{a} b$ into the above equation, we have
$\frac{d \Phi}{d x}=-\frac{\alpha a b\left(D_{A}-D_{B}\right)}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot \frac{k_{B} T}{e} \cdot \frac{1}{C} \cdot \frac{d c}{d x}$

The local electrical field (E) is given by
$E=-\frac{d \Phi}{d x}=\frac{\alpha a b\left(D_{A}-D_{B}\right)}{\left[Z_{c}{ }^{2} D_{A} a+Z_{a}{ }^{2} D_{B} b\right]} \cdot \frac{k_{B} T}{e} \cdot \frac{1}{C} \cdot \frac{d c}{d x}$
This is a local internal field, not measurable. If $D_{A}=D_{B}$, there is no internal electrical field.

