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Lecture 26: Diffusion of Ions: Part 1: basic understanding and the 

derivation of diffusion flux 

 

Today’s topics 

• Understanding of the fundamental differences between a solution (solid or liquid) consisting of 
only neutral species (atoms, molecules) and the one containing ions (i.e., electrically charged 
atoms or molecules).  

• The local potential around an individual ion is now consisted of both the regular ‘chemical 
potential’ and the electrical potential built up by the electrical charge; and this combined 
potential is usually referred as ‘electrochemical potential’. 

• The diffusion kinetics, in terms of diffusion coefficient and diffusion flux, now have to be 
deduced (using the Fick’s first law) from the ‘‘electrochemical potential’, rather than the regular 
‘chemical potential’, using the same protocol as we went through in Lecture 5. 

  
 
Brief introduction: 
All the diffusion processes and kinetics we have considered so far are for electrically neutral species, e.g., 
atoms (carbon, iron, gold, copper, etc.) or molecules (water, alcohol, iron oxides, etc.). however, when a 
solution contains or consists of electrically charged species (typically ions, cations or anions), electric field will 
be generated around each of the ions, and such electric fields will affect the migration of other ions in 
proximity --- a cation attracts anions, but repulses other cations; and reversely also true for an anion. The 
electric fields may be externally imposed, or internally created, or both. Internal electric fields are often created 
during diffusion and can exist over a small distance – a few Å or nm. These are electric fields developed to 
maintain electroneutrality. In all physical processes, electroneutrality is almost always assumed.  How to 
integrate the effect of electrical fields into the diffusion kinetics is the topic of today’s and next lecture.  
 
Electrochemical potential: 
For an ion ‘i’ with charge = Zie (where Zi is the valence; positive for cations (e.g., +1 for Na+, +2 for Ca2+, +3 
for Fe3+, etc.), negative for anions (e.g., -1 for Cl-, -2 for SO4

2-, -3 for PO4
3-, etc.), ‘e’ is the charge of one 

electron (= 1.60217646 × 10-19 coulombs). The potential of the ion ‘i’, now called electrochemical potential, ηi, 
is consisted of both the chemical potential and electrical potential, as given by 

i i iZ eη µ= + Φ   (per ion) 

where Φ = local electrostatic potential. 
 
The above definition is on a per ion basis. On a per mole basis, it becomes: 

i i iZ Fη µ= + Φ    (per mole) 

where F= Faraday constant (96,487 coulombs/mole). 
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Diffusion of ions: 
As we learned in Lecture 5, according Fick’s first Law, the diffusion flux of neutral species like atoms can be 
expressed as:  
 

J = -D· dC
dx

 = -D·
B

C
k T

·
dx
dµ  

 
Now, replace the “chemical potential, µ” with “electrochemical potential, ηi”, we will have the diffusion flux 
expressed for an ion “i”.  

i i i
i

B

D C dJ
k T dx

η
= − ⋅     ( in unit of #/cm2.sec) 

 
Now let us consider a salt AaBb (for example CaCl2, a=1, b=2) dissolved in a medium (e.g., water), where it 
dissociates into free ions: one cation Ca2+, and two anion Cl-.  This process usually referred as ionization, can 
be written as 

c aZ Z
a bA B aA bB+



 

where Zc and Za are the valences of A-ion (cation) and B-ion (anion) respectively. Note that Zc>0 but Za<0, and 

a

c

Za
b Z
= − . 

 
Diffusion of AaBb (actually A and B ions) in the medium may be regarded as molecular diffusion of AaBb, or a 
coupled diffusion of AaBb wherein ‘a’ number of cations move in harmony with ‘b’ number of anions. The later 
description is more accurate when the salt is dissolved (dissociated) and ionized. The flux of cations and anions 
must be coupled, because large charge separation will create local electrostatic potential and thus increase the 
free energy of the system. For this reason, the condition of electroneutrality is assumed. In the dissociated state, 
the fluxes of A and B ions are given by: 

A A A
A

B

D C dJ
k T dx

η
= − ⋅ ;   B B B

B
B

D C dJ
k T dx

η
= − ⋅  

Where DA and DB are the diffusion coefficient of A and B ion, respectively, and CA and CB are the 
concentrations of A and B ion respectively.  
 
Let the concentration of the dissolved salt AaBb be ‘C’. Then, CA=aC and CB=bC. The above flux can now be 
written as: 

A A
A

B

D aC dJ
k T dx

η
= − ⋅    
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B B
B

B

D bC dJ
k T dx

η
= − ⋅  

substituting for A A cZ eη µ= + Φ  and B B aZ eη µ= + Φ , then we have, 

[ ]A A A A
A c

B B

D aC d D aC d dJ Z e
k T dx k T dx dx

η µ Φ
= − ⋅ = − ⋅ + ⋅  

[ ]B B B B
B a

B B

D bC d D bC d dJ Z e
k T dx k T dx dx

η µ Φ
= − ⋅ = − ⋅ + ⋅  

The local electrical current density due to A is  

A c AI Z e J= ⋅ ⋅  

The same way, the local electrical current density due to B is  

B a BI Z e J= ⋅ ⋅  

Since the diffusion fluxes of A and B are always coupled, the condition of electroneutrality should be 

maintained.  That is, there should be no net current (if no external field is applied).  So, 0A BI I+ =  

Or, 0c A a BZ e J Z e J⋅ ⋅ + ⋅ ⋅ =  

Submitting for JA and JB obtained above, then we have,  

2 2 0A B
c A c A a B a B

d dd dZ D a Z D ae Z D b Z D be
dx dx dx dx
µ µΦ Φ

+ + + =  

 
The above equation can be re-written as: 

2 2[ ] A B
c A a B c A a B

d dde Z D a Z D b Z D a Z D b
dx dx dx

µ µΦ
+ = − −  

 
Then, 

2 2

( )

[ ]

A B
c A a B

c A a B

d dZ D a Z D bd dx dx
dx e Z D a Z D b

µ µ
+Φ

= −
+

      (1) 

The above equation gives the gradient in local electrostatic potential, which is defined as, 
dE
dx
Φ

= −  , the 

local internal electrical field. 
 

Now, let us substitute for 
d
dx
Φ

in the equations for JA and JB. 
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[ ]A A A A
A c

B B

D aC d D aC d dJ Z e
k T dx k T dx dx

η µ Φ
= − ⋅ = − ⋅ + ⋅  

using the relationship c aZ a Z b= − (for the electroneutrality of AaBb) as mentioned above, the above equation 

can be eventually derived as: 

2 2 [ ]
[ ]

a A B B A
A c a

B c A a B

Z D D abC d dJ Z Z
k T Z D a Z D b dx dx

µ µ
= ⋅ ⋅ − ⋅

+
     (2) 

Similarly, from [ ]B B B B
B a

B B

D aC d D aC d dJ Z e
k T dx k T dx dx

η µ Φ
= − ⋅ = − ⋅ + ⋅ , we can have 

2 2 [ ]
[ ]

c A B B A
B c a

B c A a B

Z D D abC d dJ Z Z
k T Z D a Z D b dx dx

µ µ
= − ⋅ ⋅ − ⋅

+
    (3) 

 
From Eq. (2) and (3) above, we have 

aA

B c

ZJ
J Z

= − ,  

or 0c A a BZ J Z J+ = , just as required by the ‘coupled’ diffusion flux of A and B ions as discussed above, 

where the diffusion of A is in harmony with (or neutralized by) the diffusion of B. 
 

also considering the electroneutrality of AaBb, we have c

a

Z b
Z a

= − , where Zc>0, Za<0 

then, A BJ J
a b

=  

now we can define 
a b

A B
A B

J J J
a b

= =  

That is, when ‘a’ A-ions and ‘b’ B-ions move in harmony, it is as if one AaBb molecule moves.  Next lecture, 
we will continue to discuss in detail how such a “diffusion harmony” can be reflected from the diffusion flux 
considered for a “neutral” AaBb molecule --- the Nernst-Planck equation.   
 


