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Lecture 25: Ordering Transformation 

 

Today’s topics 

• Understanding of the concepts of “ideal solution”, “regular solution” and “real solution”, and 
comparison of the mixing thermodynamics between them regarding the free energy, enthalpy 
and entropy change.  

• Understanding of ordered phase: how to define the short-range order (SRO) and long-range 
order (LRO). 

• Ordering transformation: the way in which the degree of LRO and SRO decreases with 
temperature is different for different superlattices.  

 
 

 
 
Before going through the Ordering Transformation, we need to understand the following basic 
thermodynamics about solid solutions 
 
 
Ideal solution: (refs to the Book, "Phase Transformations in Metals and Alloys", by D. A. Porter, K. E. Easterling 
and M. Y. Sherif, CRC Press, third edition).  Note: the figures below are cited from this Book. 
 
The simplest type of mixing, for which the enthalpy change of the mixing, DHmix=0; the resultant solution is 
said to be ideal, and the free energy change on mixing is only due to the change in entropy, DGmix=DHmix - 
TDSmix= - TDSmix.   
Since DSmix = -R(XAlnXA + XBlnXB),  we have DGmix = RT(XAlnXA + XBlnXB) 
 

Regular solution: (refs to the same Book above) 
The ideal solution as defined above, DHmix=0 is almost impossible in practice, where the mixing is, however, 
either endothermic (heat absorbed, DHmix > 0) or exothermic (heat evolved, DHmix < 0).  For a regular solution, 
where DHmix ≠ 0, the free energy change of the mixing includes the DHmix term, which in turn can be described 
by a so-called “quasichemical model” --- i.e., the heat of the mixing, DHmix is only due to the bond energies 
between adjacent atoms. For this assumption to be valid, it is necessary that the volumes of pure A and B are 
equal and do not change during mixing so that the interatomic distance and bond energies are independent of 
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composition.   

 
 
As shown in Figure 1.13 above (cited from the book above): the structure of a regular solid solution, where 
three types of interatomic bonds are present: 

1. A-A bonds each with an energy eAA 
2. B-B bonds each with an energy eBB 
3. A-B bonds each with an energy eAB 

 
Lets define zero energy to be the state where the atoms are separated to infinity, then eAA, eBB,  
eAB, are all negative in quantity (forming a bond is an exothermic process), and become increasingly more 
negative as the bonds become stronger.  The internal energy (E) of the solution will be determined by the 
number of bonds of each type, PAA, PBB, PAB, 
E = PAA eAA + PBB eBB + PAB eAB 

 
Then, the change of internal energy on mixing (DHmix) can be expressed as 
DHmix = PAB e 
where,  e = eAB - (eAA + eBB )/2, is the difference between the A-B bond energy and the average of the A-A 
and B-B bond energies. 
 
For an ideal solution, PAB = N0 z XAXB (bonds per mole),  
where N0 is the Avogadro constant, z is the number of bonds per atom, XA and XB are the molar fraction of A 
and B atom, respectively.  
 
Assuming e is not too different from zero (quite close to the situation of ideal solution), for a regular solution 
we can still approximately have:  PAB = N0 z XAXB (bonds per mole), 
Now, let’s define Ω = N0 z e; Ω is interaction parameter 
Then, DHmix = PAB e = Ω XAXB 
 
Therefore, for a regular solution, we have the free energy change of mixing: 
DGmix=DHmix - TDSmix = Ω XAXB + RT(XAlnXA + XBlnXB) 
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Real solution: (refs to the same Book above) 
Considering the “quasichemical model” described above --- i.e., the heat of the mixing, DHmix is only due to the 
bond energies between adjacent atoms, or in other words, the volumes of pure A and B are equal and do not 
change during mixing so that the interatomic distance and bond energies are independent of composition,  
 
However, the model is oversimplified for many systems in practice (i.e., the real solutions), and does not 
provide correct dependence of DGmix on composition and temperature.  For the real solutions, it is simply not 
true to assume that a random arrangement of atoms (as shown in Figure 1.13 above) is the equilibrium (or the 
most stable arrangement); the calculated value of DGmix will not give the minimum free energy change.  
 
The actual atomic arrangement for a real solution (as depicted in Figure 1.18) will be a compromise that gives 
the lowest internal energy (i.e., |DHmix| is maximized) consistent with sufficient entropy (or randomness, 
DSmix), so as to achieve the minimum DGmix.  

 

 
• When e < 0, A-B bonding is thermodynamically favorable (or atoms in solution prefer to be surrounded by 

atoms of the opposite type), the internal energy of the system is reduced (or DHmix becomes more negative) 
by increasing the number of A-B bonds, i.e., by ordering the two atoms as shown in Figure 1.18a. 

• When e > 0, A-B bonding is not thermodynamically favorable (or atoms in solution prefer to cluster by 
themselves), the internal energy of the system can be reduced (or DHmix becomes more negative) by 
increasing the number of A-A and B-B bonds, i.e., by clustering the atoms into A-rich and B-rich domains, 
as shown in Figure 1.18b. 

• Both the two situation above describe substitutional solid solution, for which the degree of ordering and 
clustering will decrease when temperature increases due to the increasing importance of entropy.  

Ordered phase: (refs to the same Book above) 
If the atoms in a substitutional solid solution are completely randomly arranged, each atom position is 
equivalent and the probability that any given site in the lattice will be occupied by an A atom will be equal to 
the fraction of A atoms in the solution XA, in the same way XB for the B atoms. In such a case, the number of 
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A-B bonds, now marked as PAB (random), can be given following the same equation above: 
PAB (random) = N0 z XAXB (bonds per mole)  
 
If the real number of A-B bonds, PAB, > PAB (random), the solution is said to contain short-range order (SRO). 

The degree of ordering can be quantified by defining a SRO parameter, “s”, as such 

 

Where PAB (max) and PAB(random) refer to the maximum number of A-B bonds possible and the number of 
A-B bonds for a random solution, respectively.  
 
Figure 1.19 shows the difference between random and short-range ordered solutions with total of 100 atoms 
(XA = XB = 0.5): 

• Figure 1.19a, for a random solution, PAB = PAB(random) = 100, then, s = 0. 
• Figure 1.19b, for a short-range ordered solution, PAB = 132, with PAB(max) ~ 200,  

       we have s = 0.32. 

 

In solutions with compositions that are close to a simple ratio of A:B atoms another type of order can be found 
as shown schematically in Figure 1.18a.  This is known as long-range order (LRO). Now the atom sites are 
no longer equivalent, but can be labeled as A-sites and B-sites.  Such a solution can be considered to be a 
different (ordered) phase separate from the random or nearly random solution.  
 
An example of LRO is for Cu-Au alloy, as shown in Figure 1.20, where Cu and Au are both fcc and totally 
miscible: 

• At high temperatures Cu and Au atoms can occupy any site and the lattice can be considered as fcc 
with a “random” atom at each lattice point as shown in Figure 1.20a.  
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• At low temperatures, however, solutions with XA = XB = 0.5, form an ordered structure in which the 
Cu and Au atoms are arranged in alternate layers as shown in figure 1.20b.  Now, each atom position 
is no longer equivalent and the lattice is described as a CuAu superlattice.   

• For alloys with the composition Cu3Au, another superlattice is found as shown in Figure 1.20c. 

 
Including the ordered lattice shown in Figure 1.20, there are five most common ordered lattices as summarized 
in Figure 1.22 along with their Strukturbericht notation and examples of alloys in which they are found.   
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Ordering Transformation: 
 
It occurs when solution has a negative enthalpy of mixing, DHmix < 0. 
 
Define long-range order parameter:  

 

Where XA is molar fraction of A atoms; rA are probability of A lattice sites occupied by “right” A atoms; XB and 
rB, similarly for B atoms. 
 

• At T=0, L=1, complete order (DS = 0), corresponding to the lowest internal energy, DGmix minimized.  
• As T↑, L¯, due to entropy contribution --- some atoms interchange positions by diffusion so that they 

are located on “wrong” sites. Entropy effects becomes increasingly more important.   
• As T > Tc, L = 0, complete disorder. 

 
Using the quasichemical model as described above for the “regular solution”, it is possible to calculate how L 
changes with temperature for different superlattices as shown in Figure 1.20 for an example.  
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Schematic diagram showing the variation of long-range order parameter (L) with temperature for (a) 
CuZn-type and (b) Cu3Au-type alloy transformation.  

 
From the Figure above we can see: the way in which L decreases to zero is different for different lattices. 

• For the equiatomic CuZn alloy, L decresases continuously with temperature up to Tc 
• For the Cu3Au alloy, L decresases only slightly up to Tc, and then abruptly drops to zero.  
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