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Lecture 24: Spinodal Decomposition: Part 3: kinetics of the 

composition fluctuation 

 

Today’s topics 

• Diffusion kinetics of spinodal decomposition in terms of the concentration (composition) 

fluctuation as a function of time: , where 

  

• Learn how to derive above equation from the Fick’s second law, for which how to deduce the 

term is critical, . 

• Understand the critical wavelength λc (or wave number βc) for the composition fluctuation: for 

 (or ), then , the composition fluctuations (amplitude) will grow --- 

thermodynamically favorable.   
• Understand the maximal wavelength λm (or wave number βm), at which the composition 

fluctuations (amplitude) will grow the fastest: when  (or ), the growth 

becomes diffusion limited.  
 

Phase diagram and free energy plot of Spinodal Decomposition 

As a special case of phase transformation, spinodal decomposition can be illustrated on a phase diagram 
exhibiting a miscibility gap (see the diagram below). Thus, phase separation occurs whenever a material 
transitions into the unstable region of the phase diagram. The boundary of the unstable region, sometimes 
referred to as the binodal or coexistence curve, is found by performing a common tangent construction of 
the free-energy diagram. Inside the binodal is a region called the spinodal, which is found by determining 
where the curvature of the free-energy curve is negative. The binodal and spinodal meet at the critical 
point. It is when a material is moved into the spinodal region of the phase diagram that spinodal 
decomposition can occur.  
 
If an alloy with composition of X0 is solution treated at a high temperature T1, and then quenched (rapidly 
cooled) to a lower temperature T2, the composition will initially be the same everywhere and its free 
energy will be G0 on the G curve in the following diagram.  However, the alloy will be immediately 
unstable, because small fluctuation in composition that produces A-rich and B-rich regions will cause the 
total free energy to decrease.  Therefore, “up-hill” diffusion (as shown) takes place until the equilibrium 
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compositions X1 and X2 are reached. How such small composition fluctuation leads to the spinodal phase 
separation is today’s and next two lectures’ topics.  

The free energy curve is plotted as a function of composition for the phase separation temperature T2. 
Equilibrium phase compositions are those corresponding to the free energy minima. Regions of negative 
curvature (d2G/dc2 < 0 ) lie within the inflection points of the curve (d2G/dc2 = 0 ) which are called the 
spinodes (as marked as S1 and S2 in the diagram above). For compositions within the spinodal, a 
homogeneous solution is unstable against microscopic fluctuations in density or composition, and there 
is no thermodynamic barrier to the growth of a new phase, i.e., the phase transformation is solely 
diffusion controlled.  

 

 
 
 
In last two lectures (#22, 23):  
For a homogeneous solid solution of composition C0, when a composition perturbation (or fluctuation) is created 
such that the composition is a function of position (although the average composition is still c0), the spinodal 
decomposition will initiated.   
 
The composition fluctuation can be described as  
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where Am = amplitude, and = wave number 

Let concentration (molar fraction) of B atom is c, the concentration of A atom is (1-c),  
Then the interdiffusion coefficient can be expressed as: 
 

   (N0 is the Avogadro constant, kB is the Boltzmann constant.) 

Where   and ,  MA and MB are mobilities of A and B, respectively. 

 

Defining  

Then,     (Inside the spinodal,  < 0.) 

 
 
Today’s Lecture: 
 
Fick’s first law gives. 

 

Rewrite the above as 

 

   

Then, Fick’s second law becomes 

 

 
In general, M depends on the composition, but here for simplicity, we assume such composition dependence is 
ignorable, so that M remains constant. 

Thus.   
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From Lecture 23, we know total free energy G(c) along one dimension can be expressed as 

 

Where g(c) is free energy per volume defined along one dimension. 
 
Taking a variational derivative 

 

           (1) 

Now, let us evaluate the term  

Note  

 

Thus,      (2) 

 
Integration by parts gives 

    

 
Then, Eq. (2) can be re-written as: 

    (3) 

 
********************************** 
What is integration by parts: 
In calculus, and more generally in mathematical analysis, integration by parts is a rule that transforms the integral 
of products of functions into other (ideally simpler) integrals. The rule arises from the product rule of 
differentiation. 
 
If u = f(x), v = g(x), and the differentials du = f '(x) dx and dv = g'(x) dx, then the product rule in its simplest 
form is: 
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********************************* 

At the very early stage of spinodal decomposition, composition variation is very small,  

So, Eq. (3) becomes 

       (4) 

 
 
Thus, Eq. (1) becomes 

      (5) 

That is  

Now, Fick’s first law above can be written as 

     (6) 

And, Fick’s second law above can be written as 

       (7) 

The above is known as Cahn’s diffusion equation, which also accounts for the “pseudo” interfacial energy, the 
term containing K (see Lecture 23). This term (as discussed for the nucleation) opposes phase separation, but 
favors concentration amplitude growth in spinodal decomposition as discussed below. 
 
We have assumed that the composition fluctuation is of the type 

 

where Am = amplitude, and = wave number, and l is the wavelength. 

 
Assuming the wavelength to be independent of time, then the time dependence must be in the amplitude, 
that is 

 

 
By inspection, it is seen that a solution to the diffusion equation (Eq. 7) has the following form: 

      (8) 
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where       (9) 

is termed amplification factor. As long as the term inside the parentheses is negative (note: 

<0 in the spinodal), , and the amplitude will grow (see the diagram below) --- the critical b is thus 

defined as: bc= , and lc=2p/b, or   

i.e., the largest β (or smallest λ) possible for the composition (c0) at a temperature to vary.  
---this is consistent with what we learned in Lecture 23, where 

To have , i.e., to assure spontaneous process, 

We deduced the same bc= , and    

 
Clearly, inside the spinodal,  

• when (or ), then , the concentration fluctuations (amplitude) will grow; 

• when (or ), then , the concentration fluctuations will decay away. 

 

 

 
As clearly seen from Eq. (8), the value of β which maximizes R(β) will grow the fastest. 
 
From Eq. (9), the maximum R(β) is given by 
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so,   

or,   

--- R(β) is maximum at  or at . 

In other words, composition fluctuation of wavelength λ (or wave number β) very close to grow much 

more rapidly than the rest (i.e., very much kinetically favorable). As a result, the microstructure formed in 
spinodal decomposition is very uniform and fine. The typical values of λm are on the order of 20 to 100Å in the 
early stage. Small angle x-ray scattering and electron diffraction are suitable techniques to study the 
microstructure formed in spinodal decomposition. 
 
As shown in the plots of R(β) vs. β or R(λ) vs. λ below: the maximal growth rate occurs as a compromise 
between the thermodynamic factor and kinetic factor. 
 

 
Note the similarity with the Eutectoid phase transformation (a typical cellular precipitation as learned in Lecture 
20), wherein the lamellar spacing (l*) corresponding to the maximum growth rate is twice that of the minimum 
possible lmin.  
 
As learned from Lecture 23, for the fluctuation to be stable (thermodynamically favorable) in relation to the 
original, homogeneous solid solution, we must have 

 

This also gives the critical b and l, ,  

Meaning, when l < lC, or b > bC, Dg will become > 0, not thermodynamically favorable for the fluctuation 
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to be stable, i.e., for the Spinodal decomposition to proceed.   
 
 
Lecture 20: Eutectoid phase transformation (a typical cellular precipitation): γ-iron à α-iron + cementite 
 

 
 
 
This gives λ* = 2λmin corresponding to the maximum growth rate as depicted below. 
 
 
 
 
 
 
 
 
 
 
 
 
Brief summary of Spinodal decomposition vs. Eutectoid transformation 
 
Three unique features shared by eutectoid transformation and spinodal decomposition 

1. structure uniformness, due to the maximal transformation rate determined by (favored at) a specific λ 
size, for the eutectoid transformation, λ* = 2λmin, for spinodal decomposition, λm = √2λc   

2. large area uniformness: because both phase transformation imitated throughout the whole phase, with 
eutectoid transformation initiated from local grain boundaries and defects, and spinodal decomposition 
from concentration fluctuation in the whole phase. 

3. Diffusion: both local, short range 
major differences: 

1. During the eutectoid transformation the original phase (here g) maintains though being consumed, 
whereas in spinodal decomposition the original phase is no longer there when cooled down to lower 
temperature T2, since the composition fluctuation changes the composition throughout the phase.  
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2. During the process of phase transformation, the new phases formed in eutectoid transformation keep 
constant concentrations (fixed composition), whereas in spinodal decomposition the composition keeps 
changing (building up the concentrations). 

3. The diffusion in eutectoid transformation is along the concentration gradient, but the diffusion of 
spinodal decomposition is against (uphill) the concentration gradient.  

4. eutectoid transformation terminates suddenly, with impingement of the cells to finish the phase 
transformation. spinodal decomposition stops by the local uphill diffusion.  

5. The specific λ size that gives the maximal rate is different for spinodal decomposition and Eutectoid 
transformation.  

 


