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Lecture 23: Spinodal Decomposition: Part 2: regarding free energy 

change and interdiffusion coefficient inside the spinodal 

 

Today’s topics 

• Continue to understand the basic kinetics of spinodal decomposition. 

• Within the spinodal, d2G/dc2 < 0 and interdiffusion coefficient ( )<0; how to interpret this 

regarding the free energy change.   
 

 

 
The starting point for the analysis is the Cahn-Hilliard equation for the total free energy (G) of a solid solution. 

 

or, in one dimensional composition variation (composition gradient in one dimension): 

 

where A is the cross-sectional area perpendicular to the x-axis,  
     NV is the number of atoms/unit volume.  
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d2G/dc2 < 0 

“c” or ”X” here refers to the 
concentration of components.  
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Also, g(c) and K are quantities defined on a per atom/molecule basis.  
If we define g(c) and K on a per unit volume basis, then we have 

        (1) 

 
In the following, concentration “c” will be used to represent atom or molar fraction.  
 
Note: The above equation was derived by “local density” approximation --- that is, by expanding ‘g’ as a 

function of c, …, about a locally homogeneous (uniform) solution, for which c = constant, 

……. 

 
Now consider a homogeneous solid solution of composition C0, the free energy of a volume A·L (L = length 
along x) is 

      . 

 
Now, let us assume that somehow a composition perturbation (or fluctuation) is created such that the 
composition is a function of position, although the average composition is still c0.  
 
Then, we can expand g(c) about the average composition. That is 

           

Thus, Gibbs free energy for an alloy of average composition c0, but with a spatially varying composition is (Eq. 
(1) à) 

    (2) 

 
Note that any composition variation can be given in terms of a Fourier series. We will simply assume that the 
entire composition variation can be described by a single sinusoidal wave of wavelength ‘λ’. Specifically, let us 
assume that the composition fluctuation is given by  

       (3) 

where Am = amplitude, and = wave number 
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Thus, when such a composition fluctuation exists, the free energy per unit volume can be deduced as follows: 
First from Eq. (2), we have 

 

Second, substitute for c with Eq. (3), we get 

 

now, write   ,    then,    ,       ,    

 
Then,  

 

Now   ,    

 

Or    

   (4) 

The above gives the free energy per unit volume of a solid solution having a composition fluctuation described 
by  

       (3) 
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Eq.(3) tells us: For a homogeneous solid solution of composition C0, if a composition perturbation (or 
fluctuation) is created such that the composition is a function of position, although the average composition is 
still c0.  
   

Now, lets continue to analyze the above equation to interpret the spinodal decomposition, wherein  

and interdiffusion coefficient ( )<0. 

 

With the composition fluctuation given by developed within the initially 

homogeneous solid solution of composition c0, the change in free energy can be written (from Eq. 4 above) as  

 

 
For the fluctuation to be stable in relation to the original, homogeneous solid solution, we must have 

 

Now, K is always >0, and β2>0, thus, 2Kβ2>0. Also, A2
m always >0. 

Therefore, for , it is necessary that . 

We have seen that inside the miscibility gap (the diagram on page 2), the free energy of the original solid 

solution is possible to have . The two points (S1 and S2) at which  are defined as 

spinodes (i.e., inflection points of the g curve), and the boundary of  in the phase diagram is 

defined as the spinodal, as shown in the diagram above. 

Thus, if the temperature is such that , i.e., inside the spinodal, and for the value of β to be 

sufficiently small (λ sufficiently large), it is possible to have to be negative 

 

 

0gD £

∞D

0( ) cosmc x c A xb= +

0

2 2
2

0 0 0 2( ) ( ) ( cos ) ( ) { 2 }
4
m

m
c

A gg g c g c g c A x g c K
c

b b¶
D = - = + - = +

¶

0

2 2
2

2{ 2 } 0
4
m

c

A gg K
c

b¶
D = + £

¶

0gD £
0

2

2 0
c

g
c
¶

<
¶

0

2

2 0
c

g
c
¶

<
¶

0

2

2 0
c

g
c
¶

=
¶

0

2

2 0
c

g
c
¶

=
¶

0

2

2 0
c

g
c
¶

<
¶

gD

0

2 2
2

2{ 2 } 0
4
m

c

A gg K
c

b¶
D = + <

¶



 5 

Then, the fluctuation is more stable composition compared to the homogeneous solid solution, i.e., . 

 

The above equation shows that the sign of does not depend on the magnitude of Am.  

The largest possible β (lowest λ) such that the fluctuation is stable with respect to the homogeneous solid 

solution (i.e., as required by ), is given by βc,  

 

 

or   

Positive, real values of βc and λc are possible only inside the spinodal so that  

 
The lower limitation λ (i.e., λc) is due to the gradient energy term (K), which implies that the fluctuation (and 
eventual decomposition) cannot occur on too fine a scale. As we see later, there are certain similarities between 
the phenomenon of spinodal decomposition and cellular precipitation, mainly from the standpoint of the role of 
bulk free energy and the interfacial energy (gradient energy). 
 
 
The Kinetics of Spinodal Decomposition:  
Uphill Diffusion (against concentration gradient), and understanding based on Chemical 

diffusion coefficient ( ), and Inter-diffusion coefficient ( ) 

As we learned before in Lecture 5, the chemical diffusion coefficient (e.g., DA
C) depends on , as 

expressed by the following equations:  
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 (per mole) 

 (per mole) 

 
Let c = concentration of B atom or mole fraction, then the above equations may also be written as 

 (per unit volume) 

 (per unit volume) 

 
Where N0 is the Avogadro constant, kB is the Boltzmann constant.   
 
From Nernst-Einstein Equation: 

  and ,  where MA and MB are mobilities of A and B, respectively. 

So,   ,   

 

Let us assume that the interdiffusion coefficient ( ) obeys Darken’s equation (Lecture 6), then,  

  

 

 

write,  

so,   
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Inside the spinodal,  

so,  < 0. 

 
Now, as we learned in Lecture 6, the Fick’s first Law gives: 
 

JA = -  ,       JB = -   

 
As the diffusion flux (JA, JB) must be positive, this means (dCA/dx, or dCB/dx) must be positive, i.e., the 
diffusion is up against concentration gradient, though still along chemical potential or free energy gradient, 
DG<0. 
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