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Lecture 20: Eutectoid Transformation in Steels: kinetics of phase growth 

 

Today’s topics 

• The growth of cellular precipitates requires the portioning of solute to the tips of the 
precipitates in contact with the advancing grain boundary.  This can occur in one of the 
two ways: either by diffusion through the lattice ahead of the advancing cell front, or by 
diffusion in the moving boundary. Today’s topic: how to describe these diffusion kinetics 
relating to the phase growth rate? 

• For cellular transformation, the diffusion distance does not increase with time.  This is 
distinct from the case of particle growth that we described in Lectures 16-18, where as the 
time proceeds, the radius of particle increases, and the concentration difference between 
the bulk phase and the particle interface decreases.  Consequently, the diffusion flux to 
the growing particle becomes small, implying that the diffusion distance becomes greater. 

 
In last Lecture:  
We went through the general description of the eutectoid transformation of Fe-C alloy from austenite to pearlite, 
g-Fe à α-Fe + Fe3C or Austenite à Ferrite + Cementite.  This phase transformation represents a typical type 
of cellular precipitation, where the two new phases are in equilibrium, and form simultaneously at the expense 
of the parent phase.   
 
The following phase diagram describes the eutectoid transformation of Fe-C alloy. 
 
 
                                              Concentrations C1, C2, C3, C4 are  
                                              various equilibrium ( stable as well as 
                                              metastable ) concentrations of carbon. 
 
 
 
 
 
 
The concentrations of carbon in the different phases near the interfaces as illustrated in this diagram: 
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• The pearlite cells grow along y-direction.  
• Assume the rate of growth is controlled by diffusion of carbon to the Fe3C plate. That is, the carbon atoms 

are removed from the matrix of γ (to form α-Fe, or ferrite) and concentrate (to form Fe3C, or cementite) --- 
formation of ferrite and cementite are simultaneous, and coherent with the consumption of austenite phase. 

• The thickness (volume fraction) of Fe3C is rather small because the initial concentration of carbon in 
austenite is low, only 0.8wt%.   

• The spacing between two adjacent cementite plates is defined as λ. 
 
We can define  
J:  as the diffusion flux of carbon,  
A:  as the effective diffusion area through which carbon are removed to form one unit area of γ/α-Fe3C 

interface.  
 

• Thus, in time dt, the amount of carbon removed is AJdt.  
• One the other hand, during the same time, one unit area of γ/α-Fe3C interface moves by dy, yielding 
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the amount of carbon removed is 1·dy (C0-C1). 
 
So,      AJdt = dy (C0-C1) 

The growth rate of interface,  v =  

 

 
 

Now let’s define A as the effective area of the diffusion path per unit area of γ-α interface, then, 
•  for diffusion in the γ or α, that is the width of the diffusion path is roughly the spacing between 

cementite plates (λ);  

• for diffusion along the α-γ interface, where is the interface thickness.  

 
                               
                                  
                              
 
                              
 
 
 
C1<C2<C3<C4, try to understand this order by considering the diffusion diagram above.  
 
Diffusion of Carbon can occur through γ, α, or α/γ interface. phase transformation is determined by the carbon 
diffusion to cementite. 

Diffusion flux , where L is the diffusion length, and DC is always positive. Please recall the Fick’s 

first law: J = -D·  (where dC is negative, along concentration gradient) 

As shown, the two adjacent cementite plates are separated by a mean spacing, l, and thus the mean diffusion 
length for the carbon atoms to reach the cementite phase is L=1/2 l.   
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Thus, we have  

 
Thereby, we can deduce the diffusion flux in the different phases 

1. For diffusion in γ: , then,  

2. For diffusion in α: , then,  

3. For diffusion along α/γ interface: , then, 

 

Now, growth rate of phase interface (v) caused by the carbon diffusion in different phases can be written as: 

1. For diffusion in γ:  

2. For diffusion in α:  

3. For diffusion along α/γ interface:  

   
 

Apparently, for diffusion in γ or α phases,  

For diffusion along α/γ interface, . 

 
The three diffusion pathways described above, through α, through γ, and along α/γ interface, are parallel in 
contributing to the phase growth.  The rate of phase transformation will be determined by whichever pathway 
provides the fastest flux flow of carbon atoms. 
 
Now let’s study how λ and v varies with T: 
 
When a unit volume of γ converts into pearlite (α-Fe + Fe3C), the change in Free energy is  
 

∆G = volumetric free energy + surface energy =  

Where  
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• is the interfacial energy between α-Fe and Fe3C,  

• = area of interfaces per unit volume  =  (since the number of α/Fe3C interface 

per unit length is 2/λ). 
 

Thus, ,    

Note:  ΔGV < 0, for T < TE  
So, as λ decreases, ∆G will becomes >0 (thermodynamically unfavorable for the phase transformation).  
The smallest allowable value of λ (λmin) is the one, at which ΔG = 0. 

Then we have,    

Clearly, at l < lmin, ∆G >0, thermodynamically unfavorable for the transformation.  
 

Now,    (see Lecture 11) 

Then,  , or    (one important point, implying that the lamellar structure 

depends on the temperature you cool down) 
 
For growth rate, v, generally,  

 (thermodynamic factor × kinetics factor)       (see Lecture 2) 

Where ∆GA is the activation barrier for the diffusion. 
 
 
Assuming that the phase transformation occurs by diffusion through either α or γ, then  

 

 
So, the phase growth rate can be written as:  

 

Where = a factor includes all other terms dependent on T, but not on λ 
 
From the above, ∆GV can be written in term of λmin, 
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Then, we have =  

Then,  

 

Or 

 

At a fixed temperature, the group of parameters before the parathesis remains a constant, so the equation can be 
simplified as  

    (be prepared to practice this equation in the homework) 

Now consider two limiting conditions: 
1. when λ = λmin,  v = 0  
2. when λ à ∞,  v à 0 

 
Clearly, “v” must exhibit a maximum at some λ between λmin and the infinite spacing. 

At the maximum,   or    

This gives λ* = 2λmin corresponding to the maximum growth rate as depicted below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown above, at lmin, ∆G = 0.  

lmin is an intrinsic parameter that depends on the temperature you cool down,  
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• the smaller the diffusion length (l), the more positive the ∆G will become (since ∆GV < 0), the more 
unfavorable the transformation will then become --- falling into the thermodynamic limited zone.   

• On the other hand, if l gets too large, v gets decreased, and eventually approaches zero when 
l à ¥., falling into the kinetics limited zone.  
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