Lecture 18: Kinetics of Phase Growth in a Two-component System:

general kinetics analysis based on the dilute-solution approximation

Today's topics:

- In the last 2 Lectures, we learned three different ways to describe the diffusion flux of B atoms across the α / β interface around the β particle, and these three fluxes should be equal each other.
- For the two-component phase transformation (particularly in the case of dilute solution of β phase dispersed in α phase), growth of the β phase (particle) usually requires long-range diffusion of B atoms towards to the β particle. In this case, the growth rate can be determined by two different rate-limiting processes: Interface Limited Growth and Diffusion Limited Growth. Both of these two processes are temperature dependent --- typically the growth rate is Arrhenius type with growth becoming very slow at low temperatures.
- When $\mathrm{rM} \gg \mathrm{D}$, then $\mathrm{C}_{\mathrm{r}} \approx \mathrm{C}_{\alpha}$--- The growth falls into the diffusion limited case, where there is very small buildup of B atoms near the β particles.
- When $\mathrm{D} \gg \mathrm{rM}$, then $\mathrm{C}_{\mathrm{r}} \approx \mathrm{C}_{\mathrm{t}}$--- The growth falls into the interface limited case, where there is large buildup of B atoms near the β particles.
- However, in a more general case, rM ~ D, the phase growth is determined by both the long-range diffusion of B atoms from the α matrix towards to the β particle and the diffusion across the α / β interface. Today's topic is to learn how to describe the kinetics of such a general phase growth.

The following kinetics treatment applies only to the dilute-solution of α phase containing small molar fraction of β phase, i.e., molar fraction of $B\left(X_{B}\right) \ll$ molar fraction of $A\left(X_{A}\right)$.

In last Lecture, we derived the diffusion flux of B atoms across the α / β interface in 3 equations:
$\mathrm{J}=\mathrm{M}\left(C_{r}-C_{\alpha}\right)$
Where $\mathrm{M}=\frac{M^{\prime} R T}{C_{\alpha}}$ defined as an interface parameter, a measure of the transport kinetics of atoms across the α / β interface, C has the unit of $\# / \mathrm{cm}^{3}$, M has the unit of $\mathrm{cm} / \mathrm{sec}$.

$$
\begin{align*}
& \mathrm{J}^{\prime}=\left|D\left(\frac{d c}{d \rho}\right)_{\rho=r}\right|=\frac{D\left(C_{t}-C_{r}\right)}{r} \tag{2}\\
& \mathrm{~J}^{\prime \prime}=\frac{C_{\beta} 4 \pi r^{2} d r}{4 \pi r^{2} d t}=C_{\beta} \frac{d r}{d t} \tag{3}
\end{align*}
$$

In a quasi-steady state, all three fluxes $\mathrm{J}, \mathrm{J}{ }^{\prime}, \mathrm{J}$ " as deduced above in Eqs. (1)(2)(3) are equal, $\mathrm{J}=\mathrm{J}$ ' = $\mathrm{J}^{\prime \prime}$
or
$C_{\beta} \frac{d r}{d t}=\frac{D\left(C_{t}-C_{r}\right)}{r}=M\left(C_{r}-C_{\alpha}\right)$

First, from $\frac{D\left(C_{t}-C_{r}\right)}{r}=M\left(C_{r}-C_{\alpha}\right)$, we have $C_{r}=\frac{D C_{t}+r M C_{\alpha}}{D+r M}$

From this equation we have two limiting cases:

- When rM >> D, then $\mathrm{C}_{\mathrm{r}} \approx \mathrm{C}_{\alpha}--$ - The growth falls into the diffusion limited case, where there is very small buildup of B atoms near the β particles.
- When $D \gg r M$, then $C_{r} \approx C_{t}---$ The growth falls into the interface limited case, where there is large buildup of B atoms near the β particles.

Now let's deal with the general case, where both the long-range diffusion of B atoms from the α matrix towards to the β particle and the diffusion across the α / β interface will be considered.

At $t=0$, before the phase transformation begins, the matrix concentration of B atoms is C_{0};
When the transformation is complete, the matrix concentration of B atoms will be C_{α}.
As assumed at the very beginning, the original α solution is dilute, or the volume fraction of β is much less than 1.0.

Now, we define the fraction transformed, $\mathrm{x}(\mathrm{t})$, as

$$
\mathrm{x}(\mathrm{t})=\frac{V_{\beta}(t)}{V_{\beta}(t=\infty)}, \quad \mathrm{V}_{\beta}(\mathrm{t}=0) \ll 1.0
$$

where V_{β} is the unit volume of β phase.

Now, $\quad V_{\beta}(t)\left(C_{\beta}-C_{0}\right)=\left(1-V_{\beta}(t)\right)\left(C_{0}-C_{t}\right)$
--- increased \# of B atoms within the β phase (particles) equals to the decreased \# of B atoms within the α phase (now with a volume of 1- $V_{\beta}(t)$)

Since $C_{\beta} \gg C_{0}$, and $V_{\beta}(t) \ll 1.0$ (the dilute solution assumption)
We have $\quad \mathrm{V}_{\beta}(\mathrm{t}) \mathrm{C}_{\beta} \approx\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{t}}\right)=>\mathrm{V}_{\beta}(\mathrm{t})=\frac{C_{0}-C_{t}}{C_{\beta}}$
$\mathrm{V}_{\beta}(\mathrm{t}=\infty)=\frac{C_{0}-C_{\alpha}}{C_{\beta}}$
Thus, $\mathrm{x}(\mathrm{t})=\frac{C_{0}-C_{t}}{C_{0}-C_{\alpha}}$
(iii)

Now, assuming there are ' \mathbf{n} ' β particles (of radius of r) per unit volume, then,
$\mathrm{V}_{\beta}(\mathrm{t})=\frac{4 \pi r^{3}}{3} n$
Then, Eq. (ii) \rightarrow
$\frac{4 \pi n r^{3}}{3}\left(C_{\beta}-C_{0}\right)=\left(C_{0}-C_{t}\right)\left(1-V_{\beta}(t)\right)$
Again, Since $C_{\beta} \gg C_{0}$, and $V_{\beta}(t) \ll 1.0$ (the dilute solution assumption), we have

$$
\begin{equation*}
\frac{4 \pi n r^{3}}{3} C_{\beta} \approx C_{0}-C_{t} \tag{iv}
\end{equation*}
$$

Differentiation of Eq. (iv) with respect to ' t ' leads to
$4 \pi n r^{2} C_{\beta} \frac{d r}{d t}=-\frac{d C_{t}}{d t}$
(v)

Also, Differentiation of Eq. (iii) with respect to ' t ' leads to
$\frac{d x(t)}{d t}=-\frac{1}{C_{0}-C_{\alpha}} \frac{d C_{t}}{d t}$
or
$-\frac{d C_{t}}{d t}=\left(C_{0}-C_{\alpha}\right) \frac{d x(t)}{d t}$
(vi)

Combining Eq. (v) and (vi) gives,
$4 \pi n r^{2} C_{\beta} \frac{d r}{d t}=\left(C_{0}-C_{\alpha}\right) \frac{d x(t)}{d t}$

Also, we have $\mathrm{J}=\mathrm{J}$ ' = J^{\prime} '
or
$C_{\beta} \frac{d r}{d t}=\frac{D\left(C_{t}-C_{r}\right)}{r}=M\left(C_{r}-C_{\alpha}\right)$

So, we can re-write Eq. (vii) as
$4 \pi n r^{2} \cdot M\left(C_{r}-C_{\alpha}\right)=\left(C_{0}-C_{\alpha}\right) \cdot \frac{d x}{d t}$
Submitting C_{r} with Eq. (i), we have
$\frac{4 \pi n r^{2} M}{C_{0}-C_{\alpha}}\left\{\frac{D C_{t}+r M C_{\alpha}}{D+r M}-C_{\alpha}\right\}=\frac{d x}{d t}$
Or
$\frac{4 \pi n r^{2} M}{C_{0}-C_{\alpha}} \cdot \frac{D\left(C_{t}-C_{\alpha}\right)}{D+r M}=\frac{d x}{d t}$

From Eq. (iv), we have
$r^{3}=\frac{3\left(C_{0}-C_{t}\right)}{4 \pi n C_{\beta}}$
then with Eq. (iii), we have
$\mathrm{r}^{3}=\frac{3\left(C_{0}-C_{t}\right)}{4 \pi n C_{\beta}}=\frac{3\left(C_{0}-C_{\alpha}\right)}{4 \pi n C_{\beta}} \cdot x(t)$
or
$r=\left(\frac{3}{4 \pi n C_{\beta}}\right)^{1 / 3}\left(C_{0}-C_{\alpha}\right)^{1 / 3} x^{1 / 3}$
(ix)

Also with Eq. (iii), we have,
$\frac{C_{t}-C_{\alpha}}{C_{0}-C_{\alpha}}=1-\frac{C_{0}-C_{t}}{C_{0}-C_{\alpha}}=1-x$
(x)

Now, with Eq. (x), we can re-write Eq. (viii) as

$$
\begin{aligned}
d t & =\frac{\left(C_{0}-C_{\alpha}\right)}{4 \pi n M D r^{2}} \cdot \frac{(D+r M)}{\left(C_{t}-C_{\alpha}\right)} \cdot d x=\frac{1}{4 \pi n M D} \frac{1}{r^{2}} \cdot(D+r M) \frac{d x}{1-x} \\
& =\frac{1}{4 \pi n}\left\{\frac{d x}{M r^{2}(1-x)}+\frac{d x}{D r(1-x)}\right\}
\end{aligned}
$$

Substituting "r" with Eq. (ix), we have
$d t=\frac{1}{4 \pi n}\left\{\frac{d x}{M\left(\frac{3}{4 \pi n C_{\beta}}\right)^{2 / 3}\left(C_{0}-C_{\alpha}\right)^{2 / 3} x^{2 / 3}(1-x)}+\frac{d x}{D\left(\frac{3}{4 \pi n C_{\beta}}\right)^{1 / 3}\left(C_{0}-C_{\alpha}\right)^{1 / 3} x^{1 / 3}(1-x)}\right\}$

Now let's set 2 new parameters
$K_{1}=\left[\frac{36 \pi n\left(C_{0}-C_{\alpha}\right)^{2}}{C_{\beta}{ }^{2}}\right]^{1 / 3} \quad$ and $\quad K_{2}=\left[\frac{48 \pi^{2} n^{2}\left(C_{0}-C_{\alpha}\right)}{C_{\beta}}\right]^{1 / 3}$
Then we have
$d t=\frac{d x}{M K_{1} x^{2 / 3}(1-x)}+\frac{d x}{D K_{2} x^{1 / 3}(1-x)}$

From this equation, it is not possible to express x as an explicit function of ' t '. Rather, we can show that ' t ' is an explicit function of ' x '. That is, we can determine the time required for the transformation to progress to a given extent, in term of fraction transformed, $x(t)$, as defined at the very beginning above.

Set $y^{3}=x$, then Eq. (xi) can be re-written as

$$
d t=\frac{3 d y}{M K_{1}\left(1-y^{3}\right)}+\frac{3 y d y}{D K_{2}\left(1-y^{3}\right)}
$$

The " t " can be expressed as

$$
t=\frac{1}{2}\left(\frac{1}{M K_{1}}+\frac{1}{D K_{2}}\right) \ln \left[\frac{1+y+y^{2}}{(1-y)^{2}}\right]+\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right) \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)+A
$$

Where A is a constant

Submitting back with $y=x^{1 / 3}$, we have
$t=\frac{1}{2}\left(\frac{1}{M K_{1}}+\frac{1}{D K_{2}}\right) \ln \left[\frac{1+x^{1 / 3}+x^{2 / 3}}{\left(1-x^{1 / 3}\right)^{2}}\right]+\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right) \tan ^{-1}\left[\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right]+A$

Now, considering the fact: when $\mathrm{t}=0, \mathrm{x}=0$, then we can deduce the value of the constant "A"

$$
A=-\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right) \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=-\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right) \frac{\pi}{6}
$$

Submitting back " A " into the equation, we have

$$
t=\frac{1}{2}\left(\frac{1}{M K_{1}}+\frac{1}{D K_{2}}\right) \ln \left[\frac{1+x^{1 / 3}+x^{2 / 3}}{\left(1-x^{1 / 3}\right)^{2}}\right]+\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right)\left[\tan ^{-1}\left(\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right)-\frac{\pi}{6}\right]
$$

Eq. (xii) can be re-written as
$\frac{t}{\tan ^{-1}\left(\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right)-\frac{\pi}{6}}=\frac{1}{2}\left(\frac{1}{M K_{1}}+\frac{1}{D K_{2}}\right) \frac{\ln \left[\frac{1+x^{1 / 3}+x^{2 / 3}}{\left(1-x^{1 / 3}\right)^{2}}\right]}{\tan ^{-1}\left(\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right)-\frac{\pi}{6}}+\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right)$

Then, a plot of $\frac{t}{\tan ^{-1}\left(\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right)-\frac{\pi}{6}}$
vs. $\frac{\ln \left[\frac{1+x^{1 / 3}+x^{2 / 3}}{\left(1-x^{1 / 3}\right)^{2}}\right]}{\tan ^{-1}\left(\frac{2 x^{1 / 3}+1}{\sqrt{3}}\right)-\frac{\pi}{6}}$ gives a straight line
with slope $\frac{1}{2}\left(\frac{1}{M K_{1}}+\frac{1}{D K_{2}}\right)$ and intercept $\sqrt{3}\left(\frac{1}{M K_{1}}-\frac{1}{D K_{2}}\right)$

Now consider 2 situations:

If $\mathrm{MK}_{1} \ll \mathrm{DK}_{2}$, interface transfer much slower than diffusion: slop is $\approx \frac{1}{2 M K_{1}}$, intercept $\approx \frac{\sqrt{3}}{M K_{1}}$
If $\mathrm{MK}_{1} \gg \mathrm{DK}_{2}$, diffusion much slower than interface transfer: slope is $\approx \frac{1}{2 D K_{2}}$, intercept $\approx-\frac{\sqrt{3}}{D K_{2}}$

So, from real experiments:
A negative intercept $\left(-\frac{\sqrt{3}}{D K_{2}}\right)$ indicates diffusion limited growth, and ratio $=\frac{\text { intercept }}{\text { slope }}=-2 \sqrt{3}$;
A positive intercept $\left(\frac{\sqrt{3}}{M K_{1}}\right)$ indicates interface limited growth, and ratio $=\frac{\text { intercept }}{\text { slope }}=2 \sqrt{3}$

