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Lecture 17: Kinetics of Phase Growth in a Two-component System: 

description of diffusion flux across the α/β interface 

 

Today’s topics 

• Major tasks of today’s Lecture: how to derive the diffusion flux of atoms.  
• Once an incipient nucleus has reached its critical size (r*), the surface energy that restricts 

the development of the new phase become insignificant and the kinetics for growth are 
becoming dominated by the limiting kinetic mechanism, i.e., the migration or jumping of 
atoms from a matrix to b particle.  

• If the phase growth requires no long-range diffusion of atoms, then the rate of growth is 
controlled by the rate of atomic transfer across the growing particle interface. This is 
usually the case of single-component phase transformation as we discussed in lecture 15.  

• However, for the two-component phase transformation (particularly in the case of dilute 
solution of one phase dispersed in another), growth of the minor phase usually requires 
long-range diffusion. In this case, the growth rate can be determined by two different 
rate-limiting processes: Interface Limited Growth and Diffusion Limited Growth. Both of 
these two processes are temperature dependent --- typically the growth rate is Arrhenius 
type with growth becoming very slow at low temperatures.  

• Interface Limited Growth: In this case, growth is limited by how fast atoms can transfer 
across the a/b interface and not the rate at which atoms can be transported to the growing 
interface. This is equivalent to growth where no long-range diffusion is required (like that 
described in Lecture 15 for the single-component system).  

• Diffusion Limited Growth: In this case, the growth rate is limited by the diffusivity, i.e., how 
fast the necessary atoms are transfer from the a matrix to the growing b-particles. In 
general, the rate of diffusion transport falls off very quickly with temperature.  
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The following kinetics treatment applies only to the dilute-solution of a phase containing small molar 
fraction of b phase, i.e., molar fraction of B (XB) << molar fraction of A (XA).   

 
In last Lecture, we derived the diffusion flux of B atoms across the α/β interface:  

J = M                  (1) 

Where M is defined as an interface parameter, a measure of the transport kinetics of atoms across the α/β 
interface, C has the unit of #/cm3, M has the unit of cm/sec.  
 
 
Deriving the diffusion flux via Fick’s law:   
 
Here again the plot describing the concentration of B as a function of the radial coordinate ‘ ’ from the center 
of the β particle of radius r: 
 
 
 
 
 
 
 
                                                             
                                                             
 
 
 
 

Fick’s first Law:  J = -D  

The pertinent diffusion equation is Fick’s second law 

            = D                (Assume D is constant) 

Assuming a quasi-steady state in the α phase,  
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                                y =  

                                z =  

                                 For a spherically symmetric case 

                                 No dependence on  and  

                                  = +  

Thus,   =0 à + =0    

Then we have: 

       C( ) =  + b 

Where a, b are constants. 
 
Now consider two limiting conditions: 

1. As ∞,  C( ) = C0,  then we have b = C0          

2. As r,  C( ) = Cr,  then we have Cr = +C0 , then we have a = (Cr-C0)r 

So, C( ) = C0+ = C0 - ; ≥r 

This assumes that concentration in the matrix far away from the growing particle is C0. In general, however, 
there will be other β particles, all competing for B atoms at same time. The net effect is that the average 
concentration in the bulk is lower than C0 as described in the diagram below. Also, this average concentration 
in the bulk is time dependent, now marked as Ct. 

 

So the above equation can be re-written as  
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C( ) = Ct -  

Then the concentration gradient in α next to β particle is 

 

Now, with the Fick’s first Law, we have  

J = J’ = =             ( 2 ) 

Here we use J’ just in order to distinct the flux from the other two as deduced in Eq. (1) and (3) below. 
 
In a quasi-steady state, the diffusion flux in bulk phase is equal to the flux as described above for the local 
cross-interface diffusion as shown in Eq. (1) 

J = M                  (1) 

 
The third way to derive the diffusion flux: 
As B atoms cross the α/β interface, the radius of β increases. In time interval dt, the radius increases by dr, the 

volume of β increases by . The composition in this region changes from Ct to Cβ, and the # of B atoms 

arrived in time dt in the volume element is  

(Cβ – Ct) ≈ Cβ ,   as Cβ>>Ct  

The area through which B atoms arrived is , thus, # of B atom crossing the α/β interface per unit area per 

unit time, i.e., the flux, is  

J’’ =                  (3) 

Here we use J’’ just in order to distinct the flux from the other two as deduced in Eq. (1) and (2) 
 
In a quasi-steady state, all three fluxes J, J’, J’’ as deduced above in Eqs. (1)(2)(3) are equal, 
J = J’ = J’’ 
or 
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First, from  , we have 

 

 
Let’s examine two limiting cases: 
1. when rM >> D:    Then Cr ≈ Cα     This is the diffusion limited case, where the consumption of B 

atoms around the β particle is so rapid that the local concentration of B reaches the equilibrium 
concentration of B in α phase, Cα. 

 
 
                                      
 
                                            In this case, there is very small 
                                            buildup of B atoms near the  
                                            β particles. 
 
 
 
2. when D >> rM:  Then Cr ≈ Ct      This is the interface limited case, where the consumption of B 

atoms around the β particle is so slow compared to the long-range diffusion flux from the bulk α phase that 
the local concentration of B remains approximately the same as the bulk concentration of B in α phase, Ct. 

 
 
 
                                        In this case, diffusion is fast and growth is 
                                         interface-controlled. There is a large 
                                         buildup of B next to β. 
 
 
 
Wert & Zener examined diffusion limited growth, Johnson, Mehl & Avrami examined interface limited 
growth (Lecture 15). 
 
Next Lecture, we will address the general case that considers both the two kinetics processes. 
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