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Lecture 16: Kinetics of Phase Growth in a Two-component System: 

dilute-solution approximation 

 

Today’s topics 

• Kinetics of phase growth (transformation) in a two-component system: atom A and B form 
two phases a and b, which are dominated by A and B, respectively.  Upon cooled from a 
pure a phase to a low temperature, b particles precipitate in the a matrix. How fast these 
particles can grow depends on the diffusion of B atoms towards to the particle, as well as 
the diffusion of A atoms away from the particle.  

• To make the kinetics analysis simple, we assume a dilute solution of a phase containing 
small molar fraction of b phase, i.e., molar fraction of B (XB) << molar fraction of A (XA).  In 
such a case, the growth of b particle depends on only the diffusion of B atoms.  

• The overall kinetics of the b particle growth is determined by the diffusion flux of B atoms 
across the a/b interface around the particle. The diffusion flux is primarily driven by the 
chemical potential difference of B atoms within the b phase and that in the proximity a 
matrix around the particle, µB

α(Cr)-µB
β(Cβ) = µB

α(Cr)-µB
α(Cα).  

• When the b particle grows sufficiently large so that the surface energy can be ignored, the 
diffusion flux of B atoms across the a/b interface can be simply described to be 
proportional to the concentration difference between the concentration of B atoms within 
the proximity a matrix around the particle (Cr) and the equilibrium concentration of B atoms 
within the bulk a matrix (Ca).   

 

The following kinetics treatment applies only to the dilute-solution of a phase containing small molar 
fraction of b phase, i.e., molar fraction of B (XB) << molar fraction of A (XA).  

 

 
Consider a binary phase diagram of the type shown in the above figure, where α phase is assumed to be dilute 
solid solution containing small fractions of β phase.  
 
Initially, the sample is a homogeneous, single phase α of composition x0 (mole fraction of B). The 
corresponding concentration of B, number of B atoms/unit volume is C0. The alloy is then cooled to a 
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temperature T1, at which the equilibrium composition of α and β are respectively Cα and Cβ, where C0>Cα.  
 
 
The free energy (G) vs. composition diagram at T1 can be drawn as below.   

--- Please refer to the basics of thermodynamics that you learned before for how to draw a molar free energy 

curve (G vs. XB) for a binary phase system a/b, and its relationship with phase diagram, as well as how to get 

chemical potential µ of each of the two component A and B in the a and b phase.  

 

From this diagram, when the β particle grows to be large, the surface energy contribution ( ) becomes 

negligible, and the curve of Gb(r) lowers down to be the same as the Gb(¥) --- as a result, the tangent point at 
the Gα curve (Cr, determined by the common tangent line between the Gα and Gb(r) curves) moves to the left to 
be the same as Ca, i.e, Cr - Ca à 0  or  Cr - Ca << Ca   
 
 
 
 
 
 
 
 
 
 
During the cooling, β particles precipitate in the α matrix and grow. The growth of β particles requires that a 
flux of B atoms flow towards the growing β particles, and meanwhile, A atoms flow away from the growing β 
particles into the α matrix. Thus, the diffusion flux must be described in terms of the interdiffusion coefficient, 

 for an atomic (e.g., metallic alloy) solid solution (see Lecture 6) 

With the initial assumption XA>>XB (XA=>1, XB=>0) we have . For 

r
V M
Babg2

D! = X ADB
C + XBDA

C

D! = X ADB
C + XBDA

C ≅ X ADB
C ≅ DB

C

G 

Gα 

A B 

µB
α(Cα)=µB

β(Cβ) or µB
α(¥)=µB

β(¥) 

cr c0 cα cβ 

µB
α(Cr) = µB

β(r) = µB
β(Cβ) +  

= µB
β(¥) +   (Lecture 9) 

Gb(r) 

Gb(¥) 

b 
 

a 
 

B 
 

B 
 

A 
 



3 
 

dilute solution of B, , so,  

--- implying that we can simply consider the only diffusion flux of B (neglect the flux of A).  
 
For β particles to grow, B atoms must diffuse to the growing β particles and then cross the α/β interface to 
deposit onto the particle. Thus, there are two continuous processes: ① diffusion of B in α ② transfer of B 
across the α/β interface. 
 
Assume the β particle growing as spherical shape, and essentially composing pure B, then we can plot the 
concentration of B as a function of the radial coordinate ‘ ’ from the center of the β particle of radius r: 
 
 
 
                                                             
                                                             
 
 
 
 
 
Where Cr is the concentration of B in α matrix in the proximity around the growing β particle of radius r. 
 
Assume β particle to be much larger than the critical size, i.e., r>>r*, so we neglect the effect of surface energy 

and chemical potential, i.e., is very small, then µB
α(Cr) à µB

α(Cα)=µB
β(Cβ), or Cr - Ca à 0  or  Cr 

- Ca << Ca  as indicated above in the free energy curve.  
 
Since α is a dilute solution of B in A, the Henry’s law applies, 
µB

α = µB
0 + RT ln(γHC)          

where γH  Henrian activity coefficient in the unit of cm3, and the concentration is in the unit of # of 
atoms/cm3 instead of mole fraction. 
 
Then we have the chemical potential for the three concentrations: 
µB

α(C0) = µB
0 + RT ln(γHC0) 

µB
α(Cr) = µB

0 + RT ln(γHCr) 
µB

α(Cα) = µB
0 + RT ln(γHCα) 

 
since, C0 > Cr > Cα, then we have  
µB

α(C0)> µB
α(Cr)> µB

α(Cα) = µB
β(Cβ) 

--- implying thermodynamic driving force for the diffusion of B atoms from the matrix α to the growing β 
particle. This diffusion flux occurs firstly by diffusion in the α phase from C0 to Cr. Once B atoms arrive at the 
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α/β interface, they can cross the interface to deposit onto the β particle because µB
α(Cr)> µB

β(Cβ)= µB
α(Cα). 

 
Description of the diffusion flux of B atoms across the α/β interface: 
 
Such flux, as marked as J, must be proportional to the thermodynamic driving force: 

J ∝ 1 – exp{ } = 1 – exp{ }  (see Lecture 2, 3) 

If  << RT, i.e., when r grows sufficiently big, Cr à Cα, µB
α(Cr) à µB

α(Cα) 

exp{ } ≈ 1-  

So, J ∝[µB
α(Cr)-µB

α(Cα)]/RT  

∝ ln = ln [1+ ] 

As discussed above, when the β particle grows to be much larger than the critical size, Cr – Cα << Cα  

Then, <<1.0,  

The with Taylor expansion, ln [1+ ] =  

So, J ∝ ,  and since Cα is a constant under a given temperature, we have J ∝ (Cr – Cα), or,  

J = M                  (1) 

 
where M is defined as an interface parameter, a measure of the transport kinetics of atoms across the α/β 
interface. M depends on T but not on composition. Concentrations Cr and Cα have the unit of #/cm3, M has the 
unit of cm/sec. 
 
If the interface thickness is ‘ ’ (a few Å), the M equals to the diffusion coefficient across the interface divided 
by ‘ ’. M = D/ . 
The process is clearly not a steady state process. However, we assume the changes with time is slow, i.e., a 
quasi-steady-state process.  
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