Lecture 16: Kinetics of Phase Growth in a Two-component System:

dilute-solution approximation

Today's topics

- Kinetics of phase growth (transformation) in a two-component system: atom A and B form two phases α and β, which are dominated by A and B, respectively. Upon cooled from a pure α phase to a low temperature, β particles precipitate in the α matrix. How fast these particles can grow depends on the diffusion of B atoms towards to the particle, as well as the diffusion of A atoms away from the particle.
- To make the kinetics analysis simple, we assume a dilute solution of α phase containing small molar fraction of β phase, i.e., molar fraction of B (X_B) << molar fraction of A (X_A). In such a case, the growth of β particle depends on only the diffusion of B atoms.
- The overall kinetics of the β particle growth is determined by the diffusion flux of B atoms across the α/β interface around the particle. The diffusion flux is primarily driven by the chemical potential difference of B atoms within the β phase and that in the proximity α matrix around the particle, $\mu_B{}^{\alpha}(C_r)-\mu_B{}^{\beta}(C_{\beta}) = \mu_B{}^{\alpha}(C_r)-\mu_B{}^{\alpha}(C_{\alpha})$.
- When the β particle grows sufficiently large so that the surface energy can be ignored, the diffusion flux of B atoms across the α/β interface can be simply described to be proportional to the concentration difference between the concentration of B atoms within the proximity α matrix around the particle (C_r) and the equilibrium concentration of B atoms within the bulk α matrix (C_α).

The following kinetics treatment applies only to the dilute-solution of α phase containing small molar fraction of β phase, i.e., molar fraction of $B(X_B) \leq <$ molar fraction of $A(X_A)$.

Consider a binary phase diagram of the type shown in the above figure, where α phase is assumed to be dilute solid solution containing small fractions of β phase.

Initially, the sample is a homogeneous, single phase α of composition x_0 (mole fraction of B). The corresponding concentration of B, **number of B atoms/unit volume** is C₀. The alloy is then cooled to a

temperature T_1 , at which the equilibrium composition of α and β are respectively C_{α} and C_{β} , where $C_0 > C_{\alpha}$.

The free energy (G) vs. composition diagram at T_1 can be drawn as below.

--- Please refer to the basics of thermodynamics that you learned before for how to draw a molar free energy curve (G vs. X_B) for a binary phase system α/β , and its relationship with phase diagram, as well as how to get chemical potential μ of each of the two component A and B in the α and β phase.

From this diagram, when the β particle grows to be large, the surface energy contribution $(\frac{2\gamma_{\alpha\beta}V_B^M}{r})$ becomes negligible, and the curve of $G_{\beta}(r)$ lowers down to be the same as the $G_{\beta}(\infty)$ --- as a result, the tangent point at the G_{α} curve (C_r , determined by the common tangent line between the G_{α} and $G_{\beta}(r)$ curves) moves to the left to be the same as C_{α} , i.e, $C_r - C_{\alpha} \rightarrow 0$ or $C_r - C_{\alpha} << C_{\alpha}$

During the cooling, β particles precipitate in the α matrix and grow. The growth of β particles requires that a flux of B atoms flow towards the growing β particles, and meanwhile, A atoms flow away from the growing β particles into the α matrix. Thus, the diffusion flux must be described in terms of the interdiffusion coefficient,

 $\widetilde{D} = X_A D_B^C + X_B D_A^C$ for an atomic (e.g., metallic alloy) solid solution (see Lecture 6)

With the initial assumption $X_A \gg X_B$ ($X_A \gg 1$, $X_B \gg 0$) we have $\widetilde{D} = X_A D_B^C + X_B D_A^C \cong X_A D_B^C \cong D_B^C$. For

dilute solution of B, $D_B^C \cong D_B$, so, $\widetilde{D} \cong D_B$

--- implying that we can simply consider the only diffusion flux of B (neglect the flux of A).

For β particles to grow, B atoms must diffuse to the growing β particles and then cross the α/β interface to deposit onto the particle. Thus, there are two continuous processes: ① diffusion of B in α ② transfer of B across the α/β interface.

Assume the β particle growing as spherical shape, and essentially composing pure B, then we can plot the concentration of B as a function of the radial coordinate ' ρ ' from the center of the β particle of radius r:

Where C_r is the concentration of B in α matrix in the proximity around the growing β particle of radius r.

Assume β particle to be much larger than the critical size, i.e., r>>r*, so we neglect the effect of surface energy

and chemical potential, i.e., $\frac{2\gamma_{\alpha\beta}V_M^{\ \beta}}{r}$ is very small, then $\mu_B^{\alpha}(C_r) \rightarrow \mu_B^{\alpha}(C_{\alpha}) = \mu_B^{\beta}(C_{\beta})$, or $C_r - C_{\alpha} \rightarrow 0$ or C_r

- $C_{\alpha} \leq C_{\alpha}$ as indicated above in the free energy curve.

Since α is a dilute solution of B in A, the Henry's law applies, $\mu_B{}^{\alpha} = \mu_B{}^0 + RT \ln(\gamma_H C)$ where γ_H – Henrian activity coefficient in the unit of cm³, and the concentration is in the unit of # of atoms/cm³ instead of mole fraction.

Then we have the chemical potential for the three concentrations:
$$\begin{split} & \mu_B{}^{\alpha}(C_0) = \mu_B{}^0 + RT \ln(\gamma_H C_0) \\ & \mu_B{}^{\alpha}(C_r) = \mu_B{}^0 + RT \ln(\gamma_H C_r) \\ & \mu_B{}^{\alpha}(C_{\alpha}) = \mu_B{}^0 + RT \ln(\gamma_H C_{\alpha}) \end{split}$$

since, $C_0 > C_r > C_{\alpha}$, then we have $\mu_B^{\alpha}(C_0) > \mu_B^{\alpha}(C_r) > \mu_B^{\alpha}(C_{\alpha}) = \mu_B^{\beta}(C_{\beta})$

--- implying thermodynamic driving force for the diffusion of B atoms from the matrix α to the growing β particle. This diffusion flux occurs firstly by diffusion in the α phase from C₀ to C_r. Once B atoms arrive at the

 α/β interface, they can cross the interface to deposit onto the β particle because $\mu_B^{\alpha}(C_r) > \mu_B^{\beta}(C_{\beta}) = \mu_B^{\alpha}(C_{\alpha})$.

Description of the diffusion flux of B atoms across the α/β interface:

Such flux, as marked as J, must be proportional to the thermodynamic driving force:

$$J \propto 1 - \exp\{-\frac{[\mu_{B}^{\alpha}(C_{r}) - \mu_{B}^{\beta}(C_{\beta})]}{RT}\} = 1 - \exp\{-\frac{[\mu_{B}^{\alpha}(C_{r}) - \mu_{B}^{\alpha}(C_{\alpha})]}{RT}\} \quad (\text{see Lecture 2, 3})$$

If $\mu_B^{\alpha}(C_r) - \mu_B^{\alpha}(C_{\alpha}) \ll$ RT, i.e., when r grows sufficiently big, $C_r \rightarrow C_{\alpha}, \mu_B^{\alpha}(C_r) \rightarrow \mu_B^{\alpha}(C_{\alpha})$

$$\exp\{-\frac{[\mu_B^{\alpha}(C_r) - \mu_B^{\alpha}(C_{\alpha})]}{RT}\} \approx 1 - \frac{\mu_B^{\alpha}(C_r) - \mu_B^{\alpha}(C_{\alpha})}{RT}$$

So, $J \simeq [\mu_B^{\alpha}(C_r) - \mu_B^{\alpha}(C_{\alpha})]/RT$

$$\propto \ln \left(\frac{C_r}{C_{\alpha}}\right) = \ln \left[1 + \frac{C_r - C_{\alpha}}{C_{\alpha}}\right]$$

As discussed above, when the β particle grows to be much larger than the critical size, $C_r - C_\alpha \ll C_\alpha$

Then,
$$\frac{C_r - C_{\alpha}}{C_{\alpha}} << 1.0$$
,

The with Taylor expansion, $\ln \left[1 + \frac{C_r - C_\alpha}{C_\alpha}\right] = \frac{C_r - C_\alpha}{C_\alpha}$

So, $J \propto \frac{C_r - C_{\alpha}}{C_{\alpha}}$, and since C_{α} is a constant under a given temperature, we have $J \propto (C_r - C_{\alpha})$, or,

$$\mathbf{J} = \mathbf{M} \quad (C_r - C_{\alpha}) \tag{1}$$

where M is defined as an interface parameter, a measure of the transport kinetics of atoms across the α/β interface. M depends on T but not on composition. Concentrations C_r and C_{α} have the unit of $\#/cm^3$, M has the unit of cm/sec.

If the interface thickness is ' δ ' (a few Å), the M equals to the diffusion coefficient across the interface divided by ' δ '. M = D/ δ .

The process is clearly not a steady state process. However, we assume the changes with time is slow, i.e., a quasi-steady-state process.