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Lecture 11: Homogeneous Nucleation: solid-solid phase transformation 

 

Today’s topics 

• Homogeneous nucleation for solid-solid phase transformation, and the major difference 
compared to the liquid-solid phase transformation: the role played by the strain energy due 
to the deformation caused by the phase transformation. 

• Strain energy --- the factor determining the hysteresis in phase transformation, i.e., 
supercooling (under) or superheating (above) the equilibrium temperature.  

 
 
Briefly in last Lecture 10:  
For a particle formation, the free energy change ΔG(r) is balanced by the two ‘competitive’ factors, the volume 
free energy and interfacial energy due to formation of solid phase, just as depicted in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The nucleation barrier,  

ΔG* = ΔG(r*) ;  r*  

 
 
 
Today’s lecture:  
ΔGV can be expressed as : 

              ΔGV = = =  
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                  =  

 
At T=TM, µl

0(TM) = µs
0(TM), or Gl

0(TM) = Gs
0(TM)  due to the solid-liquid equilibrium, then  

 
Hl

0 - TM Sl
0 = Hs

0 - TM Ss
0   à  Hl

0 – Hs
0 = TM (Sl

0 -Ss
0), replace this into the Eq of ΔGV, we have 

             ΔGV =  

                 =  

Lets define  ΔSV = ,  then,  ΔGV = - ΔSVΔT 

Since Sl
0 > Ss

0, thus ΔSV <0, and since ΔT = T - TM < 0,  we have ΔGV = - ΔSVΔT<0 
 
Also by replacing ΔGV into the equation of ΔG*, we have  
 
ΔG* = 16пγ3/3(ΔSV)2(ΔT)2 

 
As T à TM, ΔT à 0, then ΔG*—>∞, barrier for nucleation is infinite at TM. 
This implies that supercooling is needed for Homogeneous nucleation. For example, a liquid nickel can be 
supercooled by 250K below TM (1453 oC) without solidification, or pure water can be supercooled to as low as 
-42 oC without being frozen into ice. 
 
A special case: Homogeneous nucleation in a solid-solid phase transformation 
 
In a solid-solid transformation, a small change in specific volume that occurs must be accommodated elastically, 
leading to strain energy effect.  Such a strain energy change must be included, together with the volume free 
energy and interfacial energy changes (as described for the liquid-to-solid transformation), into the free energy 
change of a solid-solid transformation, 

ΔG(r) = + 4pr2 γ + strain energy 

Now lets derive the strain energy 
 
Consider α—>β solid-solid transformation as depicted below 
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Assuming VM

β>VM
α, when a β particle of radius r forms in α matrix, both particle and matrix must deform 

elastically to accommodate the phase transformation. The formation of such coherent interface raises the free 
energy of the system on accounted of the elastic strain fields that arise. Somehow, we can consider such a misfit 
as fitting a β particle of radius r +δr into a cavity of radius r in α, as depicted below, 

With the mutual deformation of the two phases, the net radial strain:  E =  

The strain energy per volume as defined as C’E2  > 0, where C’ is the elastic constant of α and β (a coherent 
parameter of both the two phases) for nucleation of β in α (i.e., transformation α à β). 
 
Then we have the net change of Gibbs free energy as expressed as: 

   ΔG(r) = + 4пr2 γ +  

At r*,  ,     r* = =  

Note, for T<Teq, ΔGV or -ΔSVΔT <0, but C’E2>0.  
 
So, at a T just below Teq (DT too small) it is possible -ΔSVΔT + C’E2 >0, and then r*<0 (unphysical meaning!), 
implying that nucleation can’t occur. In other words, only when T<<Teq, i.e., sufficiently undercooled, so that 
 
-ΔSVΔT + C’E2 ≤0 ; or  

+ C’E2 ≤0; ≤0 

 ≤ ;  T ≤ Teq +     (note: ΔSV <0) 
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Or   temperature of phase transformation defined as T’tr  = Teq -    

 
 
Consider the reverse process, β—>α 
The sample was cooled below Ttr’ and is now fully transformed back into α.  Upon heating above Teq, α 
nucleate in β-matrix.  

Now    ΔGV = - , as Teq <T, >0. 

The elastic energy β—>α transformation is C”E2,  and  ΔSV = >0 

Similarly as discussed above for α—>β transformation, for β—>α transformation to occur, the system must be 
superheated, i.e., T >> Teq, so that 
 

-ΔSVΔT + C’’E2 ≤0 ;   or   ≤0 ,  where C’’ is the elastic constant of α and β (a 

coherent parameter of both the two phases) for nucleation of α in β (i.e., transformation β à α).  For many 
cases, C’’ ≈ C’ 

 ≥ ;  T ≥ Teq +     (note: ΔSV >0) 

Or  temperature of phase transformation defined as  Ttr” = Teq + ,   Ttr” = Teq + > Teq 

This leads to a hysteresis in transformation cycle (diagram below): 

ΔTh =ΔT’ +ΔT” = (Teq - Ttr’) + (Ttr” - Teq) = Ttr” - Ttr’ = (C’ + C”) 
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Summary of homogeneous nucleation in solid: 

1. When the nucleation phase has a different volume or shape than the matrix it replaces, elastic 
energy (∆GS) must be considered as part of the volumetric contribution to nucleation, as described 

in the equation,  ΔG(r) = + 4pr2 γ + = +4pr2 γ.  

2. The interfacial contribution (4pr2 γ) to the nucleation barrier dominates at small nucleus sizes, and 

volumetric contributions ( ) dominate at large nucleus sizes. The competition 

between these two contributions can produce a complicated sequence of states for a developing 
phase, i.e., at small “r” the system may select a state that minimizes surface energy at the expense 
of elastic contribution, while at large “r”, the interfacial structure can change with concomitant 
increases in interfacial energy whenever such a change leads to overall decrease in the free energy 
(ΔG(r)) through a decrease of the volumetric contribution.  The sequence of states may include 
changes in interfacial structure that relax elastic energy or even phase changes in the nuclei if less 
stable phases have similar interfacial energies.  

3. Typically for solid state nucleation, elastic energy contribution dominates at small particles sizes 
and the interfacial energy can be reduced significantly by adopting a coherent structure. As the 
particle grows, elastic energy can be reduced by the introduction of misfit dislocations into the 
interface.  Such interfacial dislocations transform a coherent interface into a semi-coherent 
interface at the expense of increased interfacial energy.  

4. In supersaturated crystalline solutions (matrix), the particles of the new phase initially formed are 
generally coherent with the matrix, due to their lowest interfacial energy compared to the 
semi-coherent or incoherent interfaces. Coherent inclusions have an associated elastic strain 
energy that resists nucleation. This elastic strain energy is not easy to express with simple 
algebraic expressions, except for ideal spherical particles (as we treated above in this lecture).  

--- ref. Prof. Craig Carter and his book, Kinetics of Materials, 1st Ed., Wiley-Interscience, 2005. 
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