Homework for Lecture 16-18

Consider the precipitation of a spherical B-rich phase (β phase) from a dilute solution (α phase) of B in A. Suppose the original concentration of B in the solid solution is $C_{0}=5 \times 10^{21}$ atoms $/ \mathrm{cm}^{3}$, the diffusion coefficient of B is $D=2 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{sec}$, and the interface transfer parameter of B is $\mathrm{M}=2 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}$. The equilibrium concentration of B in the α and the β phases $\left(\mathrm{C}_{\alpha}\right.$ and $\left.\mathrm{C}_{\beta}\right)$ are 1.625×10^{21} atoms $/ \mathrm{cm}^{3}$ and 3.75×10^{22} atoms $/ \mathrm{cm}^{3}$, respectively. In a quasi-steady state, the averaged concentration of B in the bulk $\left(\mathrm{C}_{\mathrm{t}}\right)$ remains approximately the same as C_{0}. When the radius of the β particle is $\mathrm{r}=0.8 \mu \mathrm{~m}=8 \times 10^{-5} \mathrm{~cm}$,
(1) what is the concentration of B next to the α / β interface, C_{r} ?
(2) and what is the β particle growth rate $\left(\frac{d r}{d t}\right)$?

