Homework for Lecture 16-18

Consider the precipitation of a spherical B-rich phase (β phase) from a dilute solution (α phase) of B in A. Suppose the original concentration of B in the solid solution is $C_0=5\times10^{21}$ atoms/cm³, the diffusion coefficient of B is D=2×10⁻¹⁰ cm²/sec, and the interface transfer parameter of B is M=2×10⁻⁶ cm/sec. The equilibrium concentration of B in the α and the β phases (C_{α} and C_{β}) are 1.625×10^{21} atoms/cm³ and 3.75×10^{22} atoms/cm³, respectively. In a quasi-steady state, the averaged concentration of B in the bulk (C_t) remains approximately the same as C_0 . When the radius of the β particle is r =0.8 µm=8×10⁻⁵ cm,

(1) what is the concentration of B next to the α/β interface, C_r ?

(2) and what is the β particle growth rate $(\frac{dr}{dt})$?