

Sensitometric Curve for a Positive Photoresist

Image Formation - The Dill Equations

- M(z,t) = inhibitor fraction remaining
- *I*(*z*,*t*) = radiation intensity

 $\begin{array}{ll} \frac{\partial M\left(z,t\right)}{\partial t}=-I(z,t)\,M\left(z,t\right)\,C & C \text{ expresses the photoreaction speed.} \\ \frac{\partial I(z,t)}{\partial z}=-I(z,t)\left[A\,M\left(z,t\right)+B\right] & \left[AM(z,t)+B\right] \text{ plays the role of the optical absorption coefficient.} \\ \hline \\ \frac{\text{Initial Conditions:}}{M(z,0)=I & I(0,t)=I_0 \\ I(z,0)=I_0e^{z(A+B)z} & M(0,t)=e^{z_0^{Ct}} \\ \hline \\ \hline \\ \text{The } (A,B,C) \text{ parameters characterize a given positive photoresist.} \\ \hline \\ \hline \\ \hline \\ \text{This image formation model was developed by Fred Dill at IBM Corp.} \\ \hline \end{array}$

Bleaching of a Positive Photoresist

The solution to the coupled Dill equations predicts a sharp boundary between exposed and unexposed regions of the resist. The boundary is the front of a bleaching edge which propagates downward to the substrate as the resist is exposed. This makes the wall angle more dependent upon the {A,B,C} Dill parameters than upon the exposure wavelength, and gives positive photoresists very high resolution.

Spectral Absorption of Novolac, DQ, and ICA

Primary Components of a Positive Photoresist

- Non-photosensitive base phenolic resin
 - usually novolac
- Photosensitive dissolution inhibitor

 usually a DQ-derived compound
- · Coating solvent
 - n-butyl acetate
- xylene
- 2-ethoxyethyl acetate
 - very carcinogenic, TLV = 5 ppm
 - · now removed from most positive photoresists

R. B. Darling / EE-527

Secondary Components of a Positive Photoresist

- Antioxidants
- · Radical scavengers
- Amines to absorb O2 and ketenes
- Wetting agents
- · Dyes to alter the spectral absorption characteristics
- Adhesion promoters
- Coating aids

Single Component Positive Photoresists

- Use a photosensitive resin.
- Radiation produces chain scission, rendering region soluble to a developer.

R. B. Darling / EE-527

Novolac Dissolution - 1

• A minimum concentration of [OH] is required to produce a net forward rate:

The dissolution rate is R = kCⁿ, where C is the base concentration. For NaOH solutions, R = $(1.3 \times 10^5) [Na^+]^1 [OH^+]^{3.7}$ Angstroms/second.

R. B. Darling / EE-527

Novolac Dissolution - 2

Typical data for different developer solutions:

Solution	Dissolution Rate, Angstroms/second	
	Unexposed	Exposed
0.15 M NaOH	20	1400
0.15 M KOH	10	860
0.15 M NaOH +	270	3400
0.1 M Na2SiO3		
0.15 M NaOH +	350	2800
0.1 M Na ₃ PO ₄		
0.15 M NaOH +	270	2400
0.1 M Na ₂ CO ₃		

R. B. Darling / EE-527

