Refractive Power of a Surface

- The refractive power P is measured indiopters when the radius is expressed in meters.
- n_{1} and n_{2} are the refractive indices of the two media.

EE-527: MicroFabrication

Exposure and Imaging

Thin Lenses

$f_{1}, f_{2}=$ focal length
$\mathrm{e}_{1}, \mathrm{e}_{2}=$ extrafocal distances
$\mathrm{e}_{1}, \mathrm{e}_{2}=$ extrect/image heights
$\mathrm{h}_{1}, \mathrm{~h}_{2}=$ object

Thick Lenses

- Photons
- white light
- Hg arc lamp
- filtered Hg arc lamp
- excimer laser
- x-rays from synchrotron
- Electrons
- focused electron beam direct write
- Ions
- focused ion beam direct write

High Pressure Hg Arc Lamp Spectrum

Projection Lithography Requirements

- $b=$ minimum feature size (spot or line)
- $2 \mathrm{~b}=$ minimum period of line-space pattern
$-\lambda=$ exposure wavelength
- Using $b=f \theta_{\text {min }}$, obtain that $b \approx \lambda / 2 N A$.
- The depth of focus can be shown to be $d_{f}= \pm \lambda / 2(\mathrm{NA})^{2}$
- A "voxel" is a volume pixel.
- For highest resolution lithograpy, desire the tallest aspect ratio voxel.
- Thus, wish to maximize the ratiod $d_{f} / b=1 / \mathrm{NA}$.
- SO: it all depends upon the NA of the lens!

Sample Calculation

- Primary reduction camera in WTC-MFL uses a projection lens with $\mathrm{f} / 6.8$ and $\mathrm{f}=9.5 \mathrm{in}$. $=241.3 \mathrm{~mm}$.
- Lens diameter is $\mathrm{D}=241.3 \mathrm{~mm} / 6.8=35.5 \mathrm{~mm}=1.40 \mathrm{in}$.
- The numerical aperture is NA $=1 / 2 * 6.8=0.074$.
- For exposure in the middle green, $\lambda=550 \mathrm{~nm}$.
- Thus, the minimum feature size is $b=550 \mathrm{~nm} / 2 * 0.074=3.72 \mu \mathrm{~m}$ for a line, or $1.220 * 3.72 \mu \mathrm{~m}=4.56 \mu \mathrm{~m}$ for a spot.
- The tightest grating pitch that could be printed using this lens is therefore $2 \mathrm{~b}=7.44 \mu \mathrm{~m}$.

Lens Aberrations

- Chromatic aberration
- Dispersion: change of refractive index with wavelength
- Monochromatic aberrations
- transverse focal shift
- longitudinal focal shift
- spherical aberration
- coma
- astigmatism
- field curvature
- distortion

Lens-Maker's Formula

$$
\frac{n_{1}}{d_{1}}+\frac{n_{2}}{d_{2}}=\frac{n-n_{1}}{R_{1}}+\frac{n-n_{2}}{R_{2}}
$$

If $\mathrm{n}_{1}=\mathrm{n}_{2}=1$, then

$$
\frac{1}{d_{1}}+\frac{1}{d_{2}}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=P=\frac{1}{f}
$$

This can also be expressed as:

$$
\left(d_{1}-f\right)\left(d_{2}-f\right)=f^{2}
$$

or:

$$
e_{1} e_{2}=f^{2}
$$

Lens Apertures

- The f -number of a lens ($\mathrm{f} / \#$) is the focal length divided by the diameter. It is a measure of the light gathering ability.
- The numerical aperture (NA) of a lens is $n * \sin \alpha$, where α is the half-angle of the largest cone of light entering the lens.

$$
\begin{gathered}
f / \#=\frac{f}{D} \\
N A=n \sin \alpha \\
N A=\frac{\frac{1}{2} D}{\sqrt{\frac{1}{4} D^{2}+f^{2}}} \approx \frac{D}{2 f}=\frac{1}{2 \cdot f / \#}
\end{gathered}
$$

Resolving Power of a Lens

- Rayleigh criterion:
- Minimum angular ray separation to resolve two spots from one is: $\sin \theta_{\text {min }}=1.220 \lambda / \mathrm{D}$.
- Since $\theta_{\text {min }}$ is small, $\theta_{\text {min }} \approx 1.220 \lambda / D$.
- D is the diameter of a circular aperture.
- 1.220 is the first zero of the Bessel function $\mathrm{J}_{\mathrm{m}}(\mathrm{x})$.
- An Airy function results fromFraunhofer diffraction from a circular aperture.
- Straight line pattern:
- Minimum angular ray separation to resolve two lines from one is: $\sin \theta_{\min }=\lambda / D$, or approximately $\theta_{\min } \approx \lambda / D$.

Standing Waves - 2

- Standing waves are enhanced by reflective wafer surfaces.
- If the wafer or substrate is transparent, reflections from the aligner chuck can create standing wave patterns, also.
- This can be eliminated by using:
- a flat black chuck (anodized aluminum)
- an optical absorber under the wafer (lint free black paper)
- a transparent glass chuck (used on Karl Suss MJB3)
- Exposures can be greatly miscalculated by the presence of standing waves and reflective wafers or chucks.

Projection Optics

- It is exceeding difficult to make large NA refractive optics due to aberration limits.
- The best lenses used in projection lithography have NA $=0.3-0.4$
- A lens with NA $=0.50$ is a $f / 1.00$ lens: its focal length and effective diameter are the same!
- The largest NA lenses ever made were a NA $=0.54$ and a NA $=$ 0.60 by Nikon.
- Reflective optics are better suited for large NA applications.
- But they are physically larger, and usually require close temperature stability to keep their proper contours and alignment.
- Combinations (catadioptric) systems are also used.
- This is very common in DSW (stepper) lithography equipment.
R. B. Darling/EE-527

Photographic Exposure Equation

$$
T=\frac{f^{2}}{S B}
$$

$T=$ exposure time in seconds
$f=$ f-number of projection lens
$S=$ ASA or ISO film speed
$B=$ scene brightness in candles/ ft

American Standards Association (ASA) film speed is the dose required to produce an optical density of 0.1 in a film media.	German DIN film speed is: DIN $=10 \log _{10}(\mathrm{ASA})+1$ $100 \mathrm{ASA}=21$ DIN

American Standards Association film speed is the dose density of 0.1 in a film media.

German DIN film speed is:
DIN $=10 \log _{10}(\mathrm{ASA})+1$
$100 \mathrm{ASA}=21 \mathrm{DIN}$

Contact and Proximity Lithography Resolution

- $\lambda=$ exposure wavelength
- d = resist thickness
- $2 \mathrm{~b}=$ minimum pitch of line-space pattern
- $\mathrm{s}=$ spacing between the mask and the resist
- Contact Printing:

$$
2 b=3 \sqrt{0.5 \lambda d}
$$

- At $\lambda=400 \mathrm{~nm}, \mathrm{~d}=1 \mu \mathrm{~m}$, obtain $\mathrm{b}=0.7 \mu \mathrm{~m}$ linewidth
- Proximity Printing:

$$
2 b=3 \sqrt{\lambda(s+0.5 d)}
$$

- At $\lambda=400 \mathrm{~nm}, \mathrm{~s}=10 \mu \mathrm{~m}, \mathrm{~d}=1 \mu \mathrm{~m}$, obtain $\mathrm{b}=3.0 \mu \mathrm{~m}$ linewidth.

Optical Absorbance and Density

$$
\begin{array}{cc}
T=\frac{I_{2}}{I_{1}} & \text { transmittance } \\
A=\frac{1}{T}=\frac{I_{1}}{I_{2}} & \text { absorbance } \\
O D=\log _{10}(A) & \text { optical density }
\end{array}
$$

Typical optical densities:
Typical optical densities:
xerox transparency: OD $=1$
xerox transparency: $O D=1$
photographic emulsion plate: $O D=2-3$
chrome photomask: OD =5-6
chrome photomask: $O D=5-6$

Standing Waves - 1

- Short exposure wavelengths can create standing waves in a layer of photoresist. Regions of constructive interference create increased exposure.
- These can impair the structure of the resist, but can be eliminated by:
- use of multiple wavelength sources
- postbaking
- Effects are most noticeable at the edge of the resist.

Optical Modulation

$I=$ optical intensity, $\mathrm{W} / \mathrm{cm}^{2}$
$M=$ optical modulation within a scene or image
$M T=$ modulation transfer factor for an optical element

$$
M=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \quad M \rightarrow 1 \text { when } I_{\min } \rightarrow 0
$$

$$
M T=\frac{M_{\text {out }}}{M_{\text {in }}}
$$

Modulation Transfer Function

The modulation transfer function (MTF) is the modulus of the Fourier transform of the linespread function:

$$
\operatorname{MTF}(f)=\left|\int_{-\infty}^{\infty} L(x) e^{-2 \pi j i x x} d x\right|
$$

f is the spatial frequency

Optics obeys linear system theory:
$\operatorname{MTF}($ system $)=\operatorname{MTF}\left(\right.$ element $\left._{1}\right) \times \operatorname{MTF}\left(\right.$ element $\left._{2}\right) \times \operatorname{MTF}\left(\right.$ element $\left._{3}\right) \times \ldots$

Modulation Transfer Function in Photolithography

MTF $($ system $)=\operatorname{MTF}($ mask $) \times \operatorname{MTF}($ optics $) \times \operatorname{MTF}($ resist $)$
R. B. Darling / EE-527

Exposure Latitude
Dimensional Latitude:
(typically want less than 0.05) $\quad \delta=\left|\frac{L^{\prime}}{L^{\prime}}\right|$

Proximity Exposure Effect - 1

Optimum exposure depends upon the pattern!!!

Adjacent clear (bright) regions add additional exposure to a given region because of overlap from Gaussian tail of the linespread function.

Spread Functions
uniform illumination

mask plate

Line Spread Function L(x)

$$
L(x)=\frac{d J(x)}{d x}
$$

uniform illumination $\downarrow \downarrow \downarrow$
\qquad

Edge Spread Function $\mathrm{J}(\mathrm{x})$

$$
J(x)=\int_{-\infty}^{x} L\left(x^{\prime}\right) d x^{\prime}
$$

Proximity Exposure Effect - 2

R. B. Darling / EE-527

Phase Shifting Masks

