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• Microfluidic Component Examples
• Chemical Microsystems for Analysis
• Chemical Microsystems for Synthesis

Microchannels, Fluidic Vias KOH Etch vs. DRIE

KOH Etched (100 µm channels) DRIE Etched (5 µm channels)



Microchannels Microchannel Reaction Zone

100 µm Channels 5 µm Channels

Reactor Cross Section

Inside Channel

Urea Ammonia
Product

“First generation” PDMS Microreactors

5 cm 7.5 cm 10 cm

150 µµµµm
Scale = 1 mm

Scale = 100 µµµµm

PDMS MicroReactor



Flow characteristics of transverse 
mixing featuresFeatures

•Flow 
depicted by 
contrasting 
dark 
lines/light 
green areas

•Fluid 
mixing to 
bring 
soluble 
reactant 
into contact 
with 
catalyst 
surface

Scale Comparison

Nanoreactor or Micelle Macroscale, Industrial Scale



C.M. for Analysis
• Definition
• Lab-on-chip
• Example: micro gas-analysis device
• Example: Caliper oligonucleotide

separation
• Example: Nanogen biochips

Lab-On-Chip

Micro-Gas-Analyzer Micro-Gas Analyzer Result



Applications of Microreactors
1. Distributed Processing
2. Toxic or Hazardous Chemicals
3. Chemical Prototyping
4. High-Value, Low-Volume Chemicals
5. Bulk Production of Commodity Chemicals
6. Special Environments
7. Laboratory Systems
8. Combinatorial Chemistry

C.M. for Synthesis
• Definition
• Conversion
• Selectivity
• Example: IfM Microreactor

IfM Microreactor for Synthesis Device Design

Inlet Via Outlet Via

Silicon Chip

Catalyst

Inlet Channel
Pyrex Cover

Microchannels
5µm or 100 µm

Manifold



Device Fabrication

Final 1 x 3 cm2 device

100 mm Si wafer, 18 
reactors

topside via

inlet/outlet

bottom via

channels

anodic bond

starting wafer mask layer

[KOH or DRIE Etching]

Temperature Effect
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Degradation of 
Conversion

hydrogenation dehydrogenation

Selectivity Reversal 
at T>150°C

Conversion near 100%

Activity at Troom

Both products at Troom

Benzene Space Time Yield-
Effect of Composition

Benzene Space Time Yield (200ºC)
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Space Time Yield =
yield X flow rate / catalyst area

Increasing H2
suppresses 
dehydrogenation

Increasing C6H10 favors 
dehydrogenation

Benzene Space Time Yield (200ºC)
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Features
•6 channels
•50 channel 
length
•transverse 
mixing 
features in 
each 
straight 
section

Microreactor 2 Design



Observations
•4-6 samples 
averaged for 
each data point

•critical 
influence of 
residence time 
evident

•microreactor
operated 48 
hours with no 
substantial loss 
in enzyme 
activity
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Continous Microreactor Results
50 cm channel with transverse features

Averaged data

Packaged 
Microreactor

Systems

Distributed Processing
• Nature’s Model
• Example: Oil Processing
• An Analogy of Distributed vs. Centralized 

Processing

Distributed Processing: the Cell

Mitochondrion: chemical 
factory in every cell



Distributed Processing: 
Petroleum Petroleum Processing

centralized

distributed

Analogy: 
Centralized vs. Distributed

1965 2000

Toxic or Hazardous Chemicals
• Toxic = 
• Hazardous = 
• Motivation: Operation in “explosive 

regime”
• Motivation: transport, storage, monitoring
• Example: ion-implantation of As+



Explosive Regime Example
• H2 + ½ O2 → H2O
• 500°C, water produced without explosion

MIT Microreactor Fabrication

Mass Transfer Characteristics: MIT Example: Ion-Implantation 
Source

Silicon wafer

“Doped” n-type region

0.1 to 1 µm

[As+]≈ 1e18 cm-3



Ion-Implanter Schematic

AsH3 tank

Scale-Up

Benchtop

Pilot
Plant Iteration 1 Plant Iteration 2

Microreactor
Prototype

Plant

Scale-Up Example

 

High-Value, Low-Volume Chemicals
• Examples

– Pharmaceuticals
– NO

• Motivation
– Short shelf lives
– Toxicity
– New therapies
– Implantation



Bulk Production of Commodity 
Chemicals

• Definitions: No distinction by “brand”
– Oil
– Polymers

• Motivation
– Higher yields
– Less pollution
– Modularity (repairs)

• Likely impact
– Slow adoption

Special Environments: Space

Combinatorial Screening for 
Discovery of New Materials

• Applications
– Pharmaceuticals
– Luminescent Materials
– Superconductors
– Magnetic Materials
– Heterogeneous 

Catalysts

• Method
– Batch Processing
– Systematic Variation 

of Composition or 
Substitutional Groups 

– High Sample Count
– Rapid Evaluation

Systematic Variation of 
Component Compositions
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Rapid Evaluation

Rapidly Probe Each Unit Sample 
for Desired Activity 
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UCLA System
Array Microreactor System: A: 
Feed gas preheater; B: Catalyst 
pellets; C: Reactant gas inlet; D: 

Flow distribution baffles; E: Bottom 
aluminum heating block; F: 
Reactor channels; G: Signal 
detection microelectrodes; 

Combinatorial Array for 
Screening Catalysts

75 Microreactor Array

Systematic variation of catalyst by 
sputter deposition

Evaluation of conversion and 
selectivity by Mass Spectrometry


