Mechanical MEMS

Dr. Bruce K. Gale Fundamentals of Micromachining

Mechanical Actuators

- Actuation mechanisms:
 - electrostatic = electrostatic attraction of charged plates
 - thermal = expansion of solids or fluids
 - shape memory alloy = considerable change in length
 - pneumatic/hydraulic = fluid pressure
 - piezoelectric = electrically induced strain
 - magnetic
 - chemical
 - biological

Electrostatic Actuators

- Based on attraction of two oppositely charged plates
- Typically low power
- Simple to fabricate
- Coulomb's law:

$$F_{elec} = \frac{1}{4\pi\varepsilon_r\varepsilon_o} \frac{q_1q_2}{x^2}$$

Electrostatic Actuation

Electrostatic Actuation

- Fabrication
 - polysilicon with sacrificial oxide
 - electroplated metal with sacrificial organic layer
 - sputtered metal with sacrificial organic layer
- <u>Torsional Actuators</u>
 - dual deflection electrodes
 - small deflection

Electrostatic Actuation

<u>Comb Drives</u>

- use large number of electrostatically actuated fine "fingers"
- attractive force is mainly due to fringing fields
- generate large movements

Electrostatic Actuation

- Rotary Micromotors
 - use freely moving central rotor with surrounding capacitive plates
 - up to 300,000 rpm
 - up to 300 V
 - Fabrication:
 - polysilicon/oxide
 - metal/resist

Electrostatic Actuation

- <u>Linear Micromotors (Scratch Drive Actuators)</u>
 - uses flexible conductive plate with small bushing at one end
 - velocities up to > 1 mm/s

Figure 2 Schematic view of the SDA under the applied load

Thermal Actuation

- Linear Thermal Expansion
- Volume Expansion/Phase-Change
- Bimorph Thermal Actuators
 - uses difference in thermal coefficients of expansion
 - heater is sandwiched between two "two" active materials
 - environmental ruggedness (+)
 - high power, low bandwidth (-)

Thermal Bimorph Video

SMA Actuators

- <u>Shape Memory Alloy</u> (SMA) Actuators
 - use alloys that exhibit considerable changes in length when heated
 - heat causes material transition from one crystal phase to another
 - alloys: Au/Cu, In/Ti, Ni/Ti

Gears from Sandia

Random Mechanical Items

Strain Gages

- Gage factor is defined as relative resistance change over strain
- Types include:
 - Metal foil
 - Thin-film metal
 - Bar semiconductor
 - Diffused semiconductor
- Implantable strain gages
- Penetrating micro-strain gage probe

Accelerometers

Sources: Analog Devices, Lucas NovaSensor, and EG&G IC Sensors

Accelerometers

- F=ma is basic concept
- Force measured by deflection or strain
- Can be related to spring constant, F=kx
- Generally displacement of proof mass is measured relative to frame
- Dynamic system as described previously
- Strain gage type most basic
 - Strain in beam measured as proof mass deflects beam
 - Lots of configurations

Accelerometers

- Capacitive accelerometers most commercialized
 - Torsion bar with assymetric plates
- Force-balanced capacitive used in autos
 - Comb of capacitors measures differential capacitance
 - Highly sensitive, typical displacement only 10 nm
 - Force feedback to maintain central location of proof mass
 - Force required to maintain equilibriumgenerates signal

Accelerometers

- Piezoelectric accelerometers
 - Generally show no DC response
 - Special circuitry to create DC response
 - Typically use ZnO
- Tunneling accelerometers
 - Highly sensitive
 - More difficult to fabricate
 - Requires closed loop control
 - Long term drift
- Latching accelerometers
 - Lock in place if acceleration exceeded

Accelerometers

- Switch arrays
 - Array of switches sensitive to increasing levels of acceleration
 - Simple to build
 - Optimizes range of accelerometer in use
- Multi-axis acclerometers
 - Only one example to date
 - Cross-axis sensitivity problem
 - Precise alignment and low cost are advantages
- All require extensive circuitry

Gyroscopes

- Measure rotation
- Couple energy from one vibrational axis to another due to Coriolis effect
- Two micromachined modes: Open loop vibration and Force-torebalance mode
- Vibrating prismatic beams
 - Beam driven in one direction, deflection measured in orthogonal direction

Gyroscopes

• Tuning forks

- Large inertial mass, increased sensitivity
- Metallic ring structure
- Dual accelerometer
- Vibrating shells
 - Two-axis
 - Vibration in z direction
 - Output in both \boldsymbol{x} and \boldsymbol{y}

Pressure Sensor (conventional)

Pressure Sensor (ultra-miniature)

Source: NovaSensor

Piezoresistive Pressure Sensors

- Piezoresistivity is a material property where bulk resistivity is influenced by mechanical stress applied to material
- Common piezoresistors: Si, poly Si, SiO2, ZnO
- Typical design: 4 piezoresistors in a Wheatstone bridge on a diaphragm
- Pressure sensitivity (mV/V-bar): S = (ΔR/ΔP)(1/R)

Capacitive Pressure Sensors

- Capacitive sensors convert charge into change in capacitance
- Advantages:
 - more sensitive than piezoresistive
 - less temperature dependent
- Disadvantages:
 - gap fabrication
 - diaphragm mechanical properties

Capacitive Pressure Sensors

- Basic concept: $C = \varepsilon A/d$
- Sensitivity: $\Delta C/\Delta d = -\epsilon A/d2$
- Small Gaps:
 - larger capacitance
 - easier capacitance detection
 - plates may stick together
- Large Gaps:
 - small capacitance
 - may require wafer bonding

Microphones

- Convert acoustic energy into electrical energy
- High sensitivity pressure sensors
- Types:
 - Capacitive
 - variable gap capacitor; most common
 - require DC bias
 - sensitivity: 0.2 to 25 mV/Pa
 - response: 10 Hz to 15 kHz

Microphones (cont)

- Piezoresistive
 - diaphragm with 4 pezoresistors in a Wheatsone bridge
 - sensitivity: ~25 μ V/Pa
 - response: 100 Hz to 5 kHz
- Piezoelectric
 - use piezoelectric material mechanically coupled to diaphragm
 - sensitivity: 50 to 250 $\mu V/Pa$
 - response: 10 Hz to 10 kHz