

Micro-Optics

- Driven by communications industry
 - Couplers, demultiplexers, switches, routers, etc.
 - Display technology
- Mostly *elements*, <u>not</u> complete systems
 - Thin-films
 - MEMS devices
 - Gratings
 - Lasers

Categories of Optical MEMS

- Sources
- Waveguide Optics
- Free-Space Optics
- Transmissive Optics
- Reflective Optics
- Diffractive Optics
- Interference-Mode
- Detectors

Sources

- Thermal Emitters
- Semiconductor Devices
 - LEDs
 - Laser Diodes
 - Edge-Emitting
 - VCSELs
 - Note that these devices using microfabrication techniques, but are not considered MEMS
 - Easily integrated
- Polymer Emitters

Semiconductor Lasers

- Pumping usually with DC current (low power)
- Many wavelengths available
- Raw beams are elliptical/wedge shaped, astigmatic
- Compact, low input power
- Optical Power
 - -0.1-5mW typical
 - HP (to 100 W) available in arrays
- Cost - \$15-\$10,000 (goes ~ with power)

Waveguide Optics

- Planar Waveguides
- Mixers and Switches
- Fiber Alignment

Waveguides

Waveguides: electromagnetic radiation "guided" via total internal reflection

 $(n_{clad} < n_{core})$

³ μm ⁷⁵ μm

Ultrafast Laser-written Guides

Integrated Bragg Gratings

Bragg Grating: Periodic variation in *n* results in selective reflection of wavelengths Device Grating made with X-ray Lithography Maveguide MaveguideMaveguide

MEMS Optical Switches

- BIG business
- Lots of investment for communications

MEMS Optical Switches

Arrays of Mirrors for Switching

MEMS OXC -- 2N Mirror Design I/O Fibers I/O Fibers Imaging Lenses Titt Mirrors Titt Mirrors IN MEMS mirrors in an NxN single-mode fiber optical crossconnect.

Arrays of Mirrors for Switching

Motion in all directions

Optical Interconnects

- Fiber-space connections via prism
- Fiber-fiber coupling (multiplexing)

Submicron Fiber Probes

Sensor Tips

Metal-coated tips for nearfield scanning microscopy (NSOM)

Free-space Micro-optics

"Microjoinery"

Micro-optical benches

Transmissive Devices

- Refractive Microlenses
- Filters
- Beamsplitters
- Prisms
- Apertures
- Shutters/Choppers

Microlenses

• AKA Lenslets

Applications of Refractive Optics

One-to-one imaging of document

(b)

Point imaging

Source-to-fiber array

Collimation/reimaging

Extrusion Molding of Optics

Photosensitive Glass

Biomimetic Lens Growth

Comparison of Microlenses

Fabrication	Asphere	Shapes	Array	FL (µm)	Diameter (mm)	Packing/ Geometry
Molded						
Plastic	Y	Any	Y	>100	>0.1	100%/any
Glass	Υ	Any	Ν	>500	>2*	
Contactless	Ν	Any†	Y		>0.1	80%/any
Resist		-				
As is	Ν	Circle	Y			
Etched	Ν	Circle	Y			
Microjet	Ν	Circle	Υ		0.08 - 1	80%/any
Photosens glass	Ν	Any†	Y	>200	0.08 - 1	80%/any
Laser	Ν	Circle	Υ	>100	>0.1	?/any

*Depends on radius of curvature of cutting tool.

†The surface figure is dependent on the boundary curve.

Reflective Optics

Reflection Coatings

– Si

- Metals
- Multilayer Dielectrics
- Mirrors
 - Single
 - Arrays

Multilayer Dielectrics

Sequential deposition of materials Sputtering Molecular beam epitaxy Self-assembly

8 10 12

Wavelength - Microns

14 16

6

4

Mirrors

Digital Mirror Displays

6.0 Beflectance

- Big push for small, lightweight, flexible displays
- Texas Instruments DMD

Tunable Filters

http://dmtwww.epfl.ch/ims/micsys/ projects/porsi/GLammel_porous_Si.ram

Diffractive Optics

- Microlenses
- Fresnel Zone Plates
- Gratings

Porous Silicon Reflector

1100 μm x 1850 μm x 30 μm..

Au tracks on Si_3N_4 used for thermal bimorph arms

Direct Writing

Micro-Fresnel lenses require gray-scale exposure and resist with linear response
Option 1=Direct-write (beam patterning)

Approximate the phase of a spherical lens with a diffracting

Gray-Scale Patterning

•Gray-scale masks produced with e-beam writing

Resist

Multilevel Patterning

Zone plate lens

- Varying fuctions
 - CollimationFocusing
 - Beam Steering
- Fabricated in-plane
- Elevated to vertical

Gratings

Interference-Mode Devices

- Fabry-Perot Interometers
- Mach-Zehnder Interferometers
- Michelson Interferometers

Fabry-Perot Interferometer

•Changes resonance wavelength (wavelength at which constructive interference occurs)

Fabry-Perot Interferometer

- Actuation moves membrane
- Movement alters optical pathlength
- Results in change in Reflected.

Fabry-Perot Array

Arrays used to cover broader spectral regionsRequired due to periodicity of interference

Waveguide Interferometers

- Optical couplers in regions of waveguide contact
- Coupling depends on relative phase of waves arriving at coupler
- Changes in "arms" produce changes in output fringes

Detectors

Applications

8000

Dispersive MicroSpectrometers

Micromirror Scanners

- Function: Beam-steering
- Applications
 - Code-reading
 - Imaging
 - Motion detection
 - Precision Machining

Dispersive MicroSpectrometers

Spatial Light Modulators

- Active Matrix Displays: Reflective Light Valves

 Efficiently map R-G-B onto screen
- SiO2 spacers define liquid crystal cell gap

References

- Microoptics Technology, Borelli
- *Optics & MEMS*, Walker and Nagel
- Fundamentals of Microfabrication
- Many, many, many WWW sites