Introduction to the LIGA Microfabrication Process

Dr. Bruce K. Gale Fundamentals of Microfabrication

Outline

- What is LIGA?
- The LIGA Process
 - Lithography Techniques
 - Electroforming
 - Mold Fabrication
- Analyzing Processing Problems

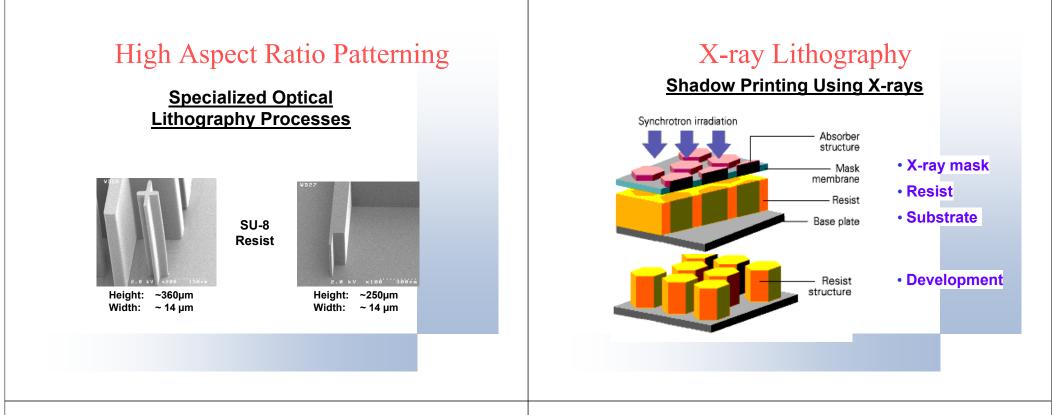
What is LIGA ?

 \Box thographie \rightarrow *Lithography*

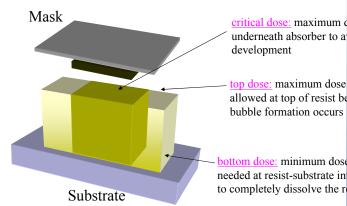
<u>G</u> alvanoformung \rightarrow *Electroforming*

 \mathbf{A} bformung \longrightarrow Moulding

• <u>Lithography</u>


In <u>general terms</u> lithography is an image transfer process using

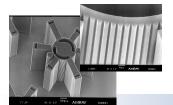
The LIGA Process


Visible and UV Light Electron Beam Ion Beam Laser Machining X-ray

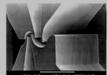
• For LIGA

The key consideration is <u>high aspect ratio</u> structures are required

Critical Parameters in DXRL Exposures

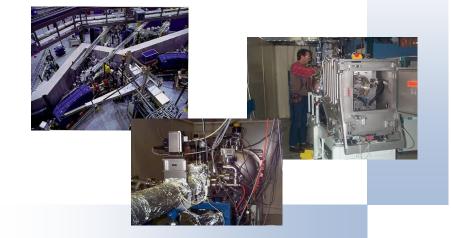

critical dose: maximum dose underneath absorber to avoid

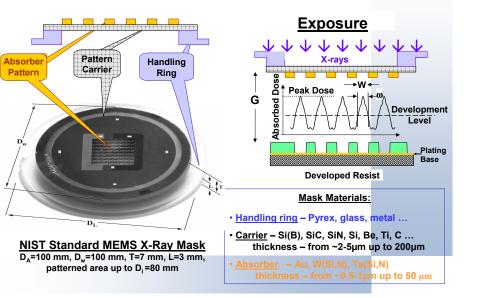
allowed at top of resist before


ottom dose: minimum dose needed at resist-substrate interface to completely dissolve the resist

Key Features of DXRL Microstructures

- Arbitrary Shape
- Structure Height up to Several Millimeters
- Minimum Feature Sizes in the Order of Micrometers
- Sub-micrometer Topographical Details
- Vertical Sidewall Profile
- Smooth Sidewalls





Deep X-ray Lithography at CAMD

Two Beam Transport Lines and Scanners for Deep X-ray Lithography

X-Ray Mask

X-ray Mask Membranes for DXRL

Silicon Based (Si, SiC, Si₃N₄)

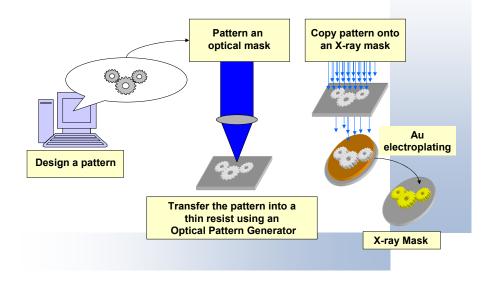
- => Acceptable X-Ray Transmission, Mechanically Stiff, Reasonable Optical Transparency(SiC, Si₃N₄), Widely Used Material
- <u>but:</u> Thin Membrane of 1-3 Micrometers Thickness, Reduced Thermal Conduction Characteristics
- Titanium
 - => Acceptable X-Ray Transmission and Stiffness
 - but: Thin Membrane of 2-3 Micrometers Thickness, Poor Thermal Conduction, no Optical Transparency

X-ray Mask Membranes for DXRL

Beryllium

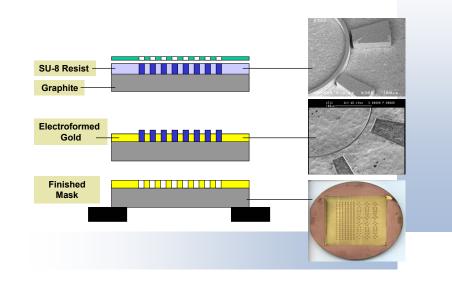
- => Excellent X-Ray Transmission, Mechanically Stable Substrate, Good Thermal Conduction for Mask Cooling
- but: Potentially Toxic, not Optically Transparent, High Cost

Diamond

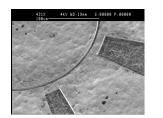

- => Reasonable X-Ray Transmission, Mechanically Stable, Good Thermal Conduction, Optically Transparent
- <u>but:</u> Free Standing Membrane in Required Size Range Difficult to Fabricate, High Cost

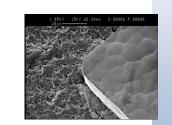
Rigid Graphite

- => Reasonable X-Ray Transmission, Rigid, Mechanically Stable Substrate, Good Thermal Conduction, Off-the-Shelf
- but: Bulk Porosity, Surface Roughness, not Optically Transparent


X-ray Mask Fabrication

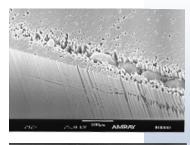
Intermediate Mask Technique

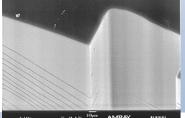

X-ray Mask Fabrication


Optical Lithography

X-ray Mask Process Development

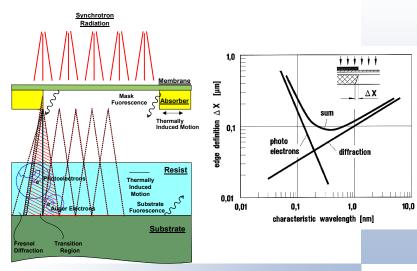
Graphite as the Mask Membrane

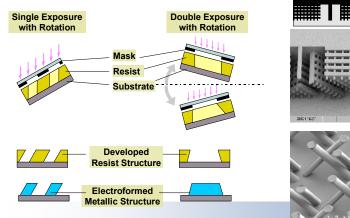


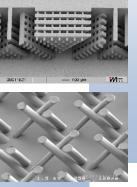


Electrodeposited Gold Absorber

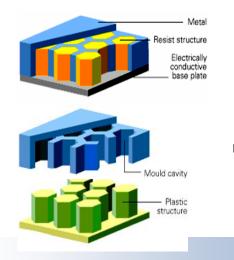
Exposed Pattern Analysis





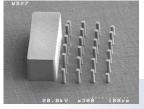

Sidewall Roughness

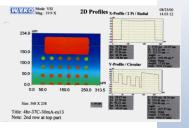
Secondary Effects in DXRL



3-D X-Ray Lithography

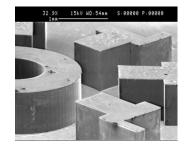
Electroforming and Molding




Electroplating of metal structures and mold inserts

Replication by molding (hot embossing, injection molding)

Electroplating in High Aspect Ratio Structures - Uniformity

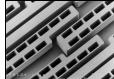


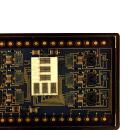
Optimized Plating Conditions Results in more Uniform Deposition of Structures with Different Dimensions.

Mold Fabrication

Nickel Electroplating




Application of Aligned Molding


LIGA Acceleration Sensor

PMMA structure

Detail

Redundant Sensor System

Ni - structures 120 µm high

