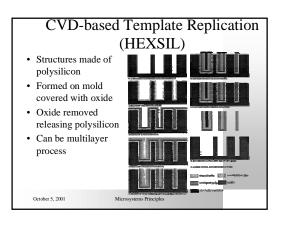
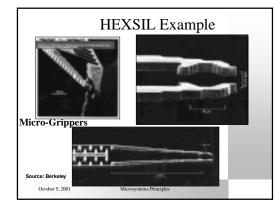


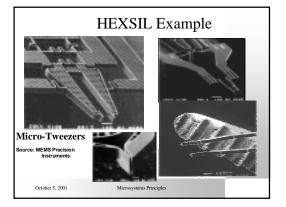
ENGR 494C and 594C

October 5, 2001

Other Micromachining Techniques · Template replication · Precision mechanical machining Sealed cavity formation Thermomigration Surface modification Photosensitive glass • Printing · Focused ion beam • Stereolithography (3-D) • SCREAM • Sharp tip formation · Chemical-mechanical polishing

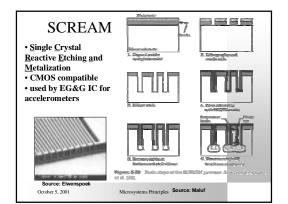

• Electric discharge machining


October 5, 2001 Microsystems Principles


Template Replication

- · Injection molding
- Metal or silicon structures used as mold
- Plastics, metal and ceramic components with plastic "binders"
- Often done with LIGA or etching in silicon
- Plating-based template replication (Electroforming) ٠
- Form mold or template
- Plate into mold
- Release structure
- · Ceramic slurry templates
- · Preformed, above substrate templates
 - Hollow microspheres

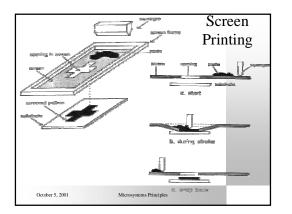
October 5, 2001 Microsystems Principles



Sealed Cavity Formation

- Form structure using sacrificial material and small access holes
- Cover holes using one of three methods
 - Simple application of glues, plastics, photoresist, etc
 - Thin-film application such as sputtered, evaporated, and CVD films
 - Reactive sealing, i.e. thermal oxidation, etc
- Gettering- collect gases in cavity

Microsystems Principles October 5, 2001

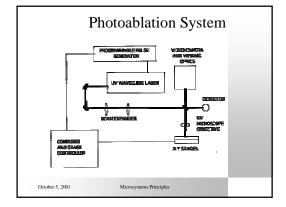


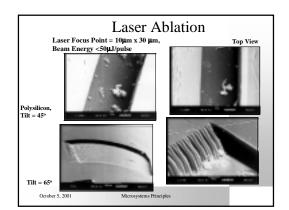
Surface Modification

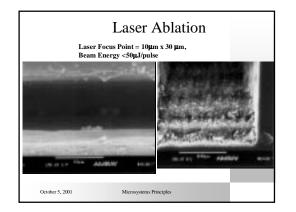
- Used to change surface properties, especially in biomedical applications
- HMDS used to "methylate" surface and remove hydroxyl groups
- Self-assembled monolayers (SAMs) formed using RSiCl₃ (R is alkyl group)
- Often used to reduce wear and adhesion forces
- Apply dendrimers (hyper-branched polymers) for molecule recognition

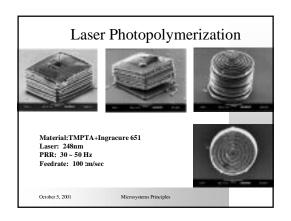
October 5, 2001 Microsystems Principles

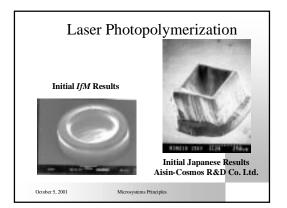
• Useful for non-planar substrates		
Very low-cost		
Screen printing		
 Resolution limit of about 100 µm 		
 Alignment more difficult 		
 Great for patterning polymer layers in biosensors 		
 One step process 		
 Requires liquid form 		
Transfer printing		
 Raised bumps used to transfer ink, etc 		
 Powder loaded polymers 		
 Material properties dependent on material in plastic liquid that can be rolled on and patterned 		
 Ink jet 		
October 5, 2001 M	icrosystems Principles	

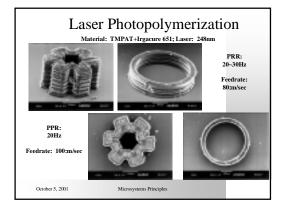

Laser Microfabrication Processes

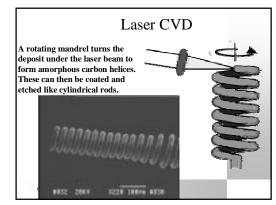

Microsystems Principles

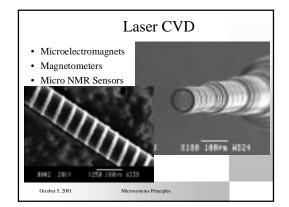

- Ablation
- Etching

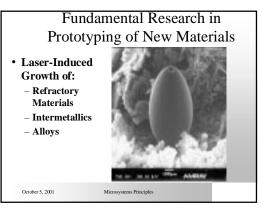

October 5, 2001

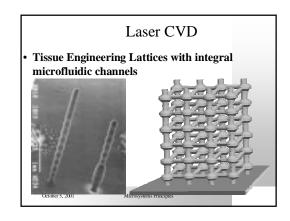

- Deposition
- Photopolymerization
- Lithography
- Microelectroforming

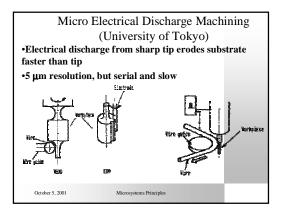


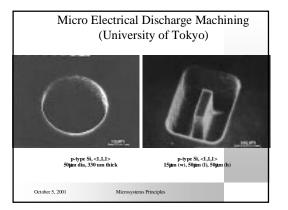


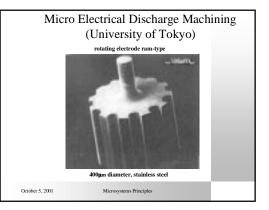












Sharp Tip Formation

- Useful for field emission devices, scanning microscopes
- · Self-occluding masks
- Perpendicular deposition (e-beam)
- Atomically sharp
- · Micromasking in plasmas - Etching in plasmas and RIE leaves sharp tips in spots where small
- particles lie on surface - By controlling gases, size, shape, and density of tips can be controlled
- · Wet etching small squares until removal

Chemical-Mechanical Polishing

- · Roughness less than 2 nm
- · Alkaline, silica containing slurry
- · Mechanical force increases etch at high spots

October 5, 2001 Microsystems Principles

Abrasive Powder Machining

- · Also called sandblasting, number of resists allow precise control Scanning Probe Machining
- · Uses scanning probe microscope to maneuver materials Thermomigration
- · At high temperature, with small differential, metals alloy with silicon and move through wafer leaving wire in wake

Photosensitive Glass

· Can be patterned using photolithography and etched using HF Stereolithography

· 3-D lithography or printing

October 5, 2001

- · Use of X-Y stage and Z-positioning lens for UV light
- Forms box or "voxel" which can be moved to from 3-D structures

· Printing done in multiple layers Microsystems Principles

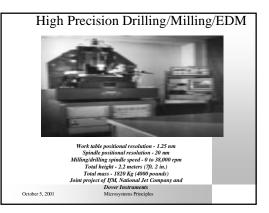
Micromechanical Machining -

An Option to Lithography

- · Can produce extremely smooth, precise, highresolution structures
- · Expensive, non-parallel, but handles much larger substrates
- Precision cutting on lathes produces miniature screws, etc with 12 µm accuracy

· Chip Processes

- diamond machining, tools ~100 µm thermal surfaces, fluid microchannels
- microdrilling, tools > 25 μ m manifolds, fiber optics, molds - micromilling, tools ~22 µm, features < 8 µm molds,
- masks, thermal surfaces
- October 5, 2001 Microsystems Principles


Micromechanical Machining -An Option to Lithography • Energy Processes

- microEDM, tools > 10 :m microturbines, toolselectrodes, stators
- focused ion beam (FIB), atomic-scale machining, micromilling tools, probes, etc.
- laser, micron-scale spot ablate hard materials, polymerization

October 5, 2001 Microsystems Principles

Micromechanical Machining Characteristics

- Relative tolerances are more typically 1/10 to 1/1000 of feature or part dimensions
- · Absolute tolerances are typically similar to those for conventional precision machining (micrometer to sub-micrometer)
- · Feature is often inaccessible by conventional metrology techniques (high aspect ratio boolean negative features)
- Like conventional machining, in-process, on-line metrology is preferred over post-process or off-line metrology October 5, 2001 Microsystems Principles

General Micromachining Metrology Tool location - Endmills $8 \mu m x 2 mm$ 22 µm x 3 mm _ - Drills 25 µm x 4 mm - Diamond 100 µm x 2 mm • Part/fixture location for multiple processes in multiple machines · Post processing of lithographic molds • Post processing of electroplated structures

October 5, 2001 Microsystems Principles

Complementary Processes (Direct Removal Processes) • Chip making (force processes) - Diamond machining

- Microdrilling
- Micromilling
- Grinding and polishing
- Microsawing
- Energy beam (forceless processes) - Focused ion beam
- Micro electrical discharge
- Laser ablative and photo polymerization

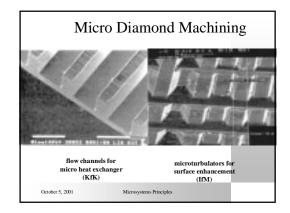
October 5, 2001 Microsystems Principles

Complementary Processes

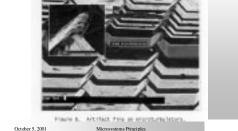
- · Often regarded as conventional precision procsses which have been "simply shrunk" for micromachining applications
- Does precision engineering have a mainstream place in MEMS, MST, Micromanufacturing, etc?
- · Do complementary processes have a mainstream place in MEMS, MST, Micromanufacturing, etc?

October 5, 2001 Microsystems Principles

What is Precision Engineering


- "Working at the forefront of current technology"
- · "Shooting after the next decimal place"
- "Those striving for the best possible product"
- "Engineering wherein the tolerances are 10⁻⁴ or less of a feature/part size"
- An attitude wherein there is no such thing as randomness, all effects have a deterministic cause

October 5, 2001 Microsystems Principles


Brief History of Diamond Machining

- Diamond was apparently first used as a cutting tool material in 1779 for hardened steel threads
- In the early 1850's, a diamond-pointed pantograph could engrave legible characters 2.5 microns high
- Lord's prayer was engraved into an area $100 \times 40 \ \mu m by 1920$
- By 1926, it was claimed that 80 "bibles per square inch" could be engraved (3,556,480 letters/bible). This gives dimensions requiring SEM (late 1930's)
- By the 1960's diamond machining was pervasive at government research labs and moving into the optics industries (Perkin-Elmer)
- Cutting with very small (tens of microns) tools was developed by Japanese in 1980's and today

October 5, 2001 Microsystems Principles

Diamond-Machined Microturbulators and Microfins for Augmented Heat Transfer

Brief History of Energy Processes

- Electrostatically charges streams of liquid date to the 18th century by Rayleigh
- Liquid metal ion source (basic to focused ion beam) demonstrated 1978-1980
- Electrical discharge machining has been around since the first thunderstorm, but used to machine mid-20th century. Ramtype microEDM (to 75 microns) used in U.S. since 1960's
- Rotating spindle microEDM and wire electrical discharge grinding pioneered in Japan in late 1980's and to today
- Laser micromachining developed in late 1980's and to today with high pulse rate, waveguide excimer laser

October 5, 2001 Microsystems Principles

Brief History of Chip Processes

- Microdrilling used for fuel injectors and textile spinnerettes since before 1950
- Vee-block, centerless spindle patented by John Cupler (basis of microdrilling/milling/EDM spindles)
- Micromilling done with micro spade drills since 1950's. Fluted end mills being developed at IfM
- Grinding and sawing developed for gem and lapidary industries, greatly improved for semiconductor applications

October 5, 2001 Microsystems Principles

- · Precision engineering has roots in astronomy and sailing
 - Hipparchus in 2nd century BC and Ptolemy in 150 AD used "graduated" instruments
- The angular diameter of Tycho's star in Cassiopeia (1572) was measured to be from 4.5 to 39 arc minutes using the best instruments of the day
- During the middle ages and industrial revolution, many improvements were made in timekeeping
 - The founders of Browne and Sharpe, the maker of the first diffraction grating were clock makers
 - The first lathes and many other machine tools are rooted in watch/clock making

October 5, 2001 Microsystems Principles

Brief History of Precision Engineering

- In modern times, precision engineering was pushed by nuclear programs
 - The laws of nature and physicist's equations do not have provisions for tolerances
- Thermal control to +/- 0.1F was demonstrated as early as 1886 at Colby College in Maine

Microsystems Principles

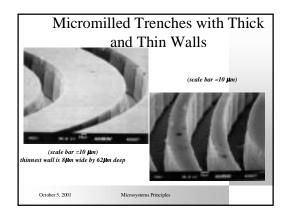
October 5, 2001

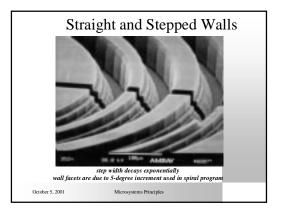
Required Process Development to Support Rapid Microfabrication

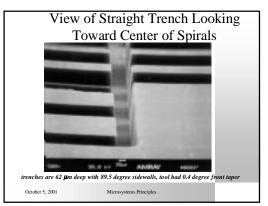
- Tool making
 - FIB might be too time consuming, but wear/tool very low
 EDM of milling tools using external die as one pole and round (or other shape) electrode as other pole
- Machining parameters
 - Which speed, feed, etc. Give best results
 - Which speed, feed, etc. Give most throughput
 - Which materials give best results

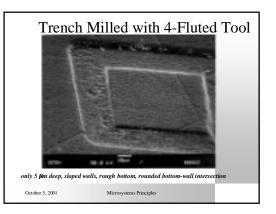
Finishing

- What are the most effective deburring methods (chemical, mechanical, electrochemical)
- What are the variable values required for effective deburring (concentration, voltage, electrolyte) October 5, 201


Required Process Development to Support Rapid Microfabrication


- Demonstration Will Be Required


 Lithography community will be slow to accept this approach, industry is already interested
- Eventual "Ground Up" Machine Tool Re-Design
- Why does it take a 5000 pound machine tool to fabricate parts where cutting forces are in the milli- to micro- Newton range?


October 5, 2001 Microsystems Principles

