
Lecture: Transactional Memory, Networks

• Topics: TM implementations, on-chip networks

1

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Avoids deadlock

2

Design Space

• Data Versioning
 Eager: based on an undo log
 Lazy: based on a write buffer

• Conflict Detection
 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)
 Pessimistic detection: every read/write checks for

conflicts (reduces work during commit)

3

“Lazy” Implementation

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

4

“Lazy” Implementation

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data)

5

“Lazy” Implementation

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted – must
simply invalidate other readers of these cache lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)

6

“Lazy” Implementation

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms 7

“Lazy” Implementation – Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols
8

“Eager” Implementation

• A write is made permanent immediately (we do not wait
until the end of the transaction)

• This means that if some other transaction attempts a
read, the latest value is returned and the memory may
also be updated with this latest value

• Can’t lose the old value (in case this transaction is
aborted) – hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This is eager versioning

9

“Eager” Implementation

• Since Transaction-A’s writes are made permanent
rightaway, it is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

• At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at least
one of them does a write

• One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B
 neither transaction needs to abort

10

“Eager” Implementation

• Can lead to deadlocks: each transaction is waiting for the
other to finish

• Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write Y
… …
read Y read X

11

“Eager” Implementation

• Note that if Tr-B is doing a write, it may be forced to stall
because Tr-A may have done a read and does not want to
invalidate its cache line just yet

• If new reading transactions keep emerging, Tr-B may be
starved – again, need other sw/hw mechanisms to handle
starvation

• Commits are inexpensive (no additional step required);
Aborts are expensive, but rare (must reinstate data from logs)

12

Other Issues

• Nesting: when one transaction calls another
 flat nesting: collapse all nested transactions into one

large transaction
 closed nesting: inner transaction’s rd-wr set are included

in outer transaction’s rd-wr set on inner
commit; on an inner conflict, only the
inner transaction is re-started

 open nesting: on inner commit, its writes are committed
and not merged with outer transaction’s
commit set

• What if a transaction performs I/O?
• What if a transaction overflows out of cache?

13

Useful Rules of Thumb

• Transactions are often short – more than 95% of them will
fit in cache

• Transactions often commit successfully – less than 10%
are aborted

• 99.9% of transactions don’t perform I/O

• Transaction nesting is not common

• Amdahl’s Law again: optimize the common case!

14

Discussion

• “Eager” optimizes the common case and does not waste
energy when there’s a potential conflict

• TM implementations require relatively low hardware support

• Multiple commercial examples: Sun Rock, AMD ASF,
IBM BG/Q, Intel Haswell

15

Network Topology Examples

Grid
Hypercube

Torus

16

Routing

• Deterministic routing: given the source and destination,
there exists a unique route

• Adaptive routing: a switch may alter the route in order to
deal with unexpected events (faults, congestion) – more
complexity in the router vs. potentially better performance

• Example of deterministic routing: dimension order routing:
send packet along first dimension until destination co-ord
(in that dimension) is reached, then next dimension, etc.

17

Deadlock

• Deadlock happens when there is a cycle of resource
dependencies – a process holds on to a resource (A) and
attempts to acquire another resource (B) – A is not
relinquished until B is acquired

18

Deadlock Example

Packets of message 1

Packets of message 2

Packets of message 3

Packets of message 4

4-way switch
Output ports

Each message is attempting to make a left turn – it must acquire an
output port, while still holding on to a series of input and output ports

Input ports

19

Deadlock-Free Proofs

• Number edges and show that all routes will traverse edges in increasing (or
decreasing) order – therefore, it will be impossible to have cyclic dependencies

• Example: k-ary 2-d array with dimension routing: first route along x-dimension,
then along y

1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0

17

18

19

18

17

16

20

Breaking Deadlock

• Consider the eight possible turns in a 2-d array (note that
turns lead to cycles)

• By preventing just two turns, cycles can be eliminated

• Dimension-order routing disallows four turns

• Helps avoid deadlock even in adaptive routing

West-First North-Last Negative-First Can allow
deadlocks

21

Packets/Flits

• A message is broken into multiple packets (each packet
has header information that allows the receiver to
re-construct the original message)

• A packet may itself be broken into flits – flits do not
contain additional headers

• Two packets can follow different paths to the destination
Flits are always ordered and follow the same path

• Such an architecture allows the use of a large packet
size (low header overhead) and yet allows fine-grained
resource allocation on a per-flit basis

22

Flow Control

• The routing of a message requires allocation of various
resources: the channel (or link), buffers, control state

• Bufferless: flits are dropped if there is contention for a
link, NACKs are sent back, and the original sender has
to re-transmit the packet

• Circuit switching: a request is first sent to reserve the
channels, the request may be held at an intermediate
router until the channel is available (hence, not truly
bufferless), ACKs are sent back, and subsequent
packets/flits are routed with little effort (good for bulk
transfers)

23

Buffered Flow Control

• A buffer between two channels decouples the resource
allocation for each channel

• Packet-buffer flow control: channels and buffers are
allocated per packet
 Store-and-forward

 Cut-through

• Wormhole routing: same as cut-through, but buffers in
each router are allocated on a per-flit basis, not per-packet

Time-Space diagrams
H B B B T

H B B B T
H B B B T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cycle

C
ha

nn
el 0

1
2
3

C
ha

nn
el H B B B T

H B B B T
H B B B T

0
1
2
3

24

Virtual Channels

Buffers Buffers

Flits do not carry headers. Once a packet starts going over a
channel, another packet cannot cut in (else, the receiving
buffer will confuse the flits of the two packets). If the packet is
stalled, other packets can’t use the channel.

With virtual channels, the flit can be received into one of N buffers.
This allows N packets to be in transit over a given physical channel.
The packet must carry an ID to indicate its virtual channel.

channel

Buffers Buffers
Physical channel

Buffers Buffers

25

Example

• Wormhole:

• Virtual channel:

A
B

B

A is going from Node-1 to Node-4; B is going from Node-0 to Node-5

Node-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

idleidle

A
B

ANode-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

B
A

Traffic Analogy:
B is trying to make
a left turn; A is trying
to go straight; there
is no left-only lane
with wormhole, but
there is one with VC

26

Virtual Channel Flow Control

• Incoming flits are placed in buffers

• For this flit to jump to the next router, it must acquire
three resources:

 A free virtual channel on its intended hop
 We know that a virtual channel is free when the

tail flit goes through
 Free buffer entries for that virtual channel
 This is determined with credit or on/off management

 A free cycle on the physical channel
 Competition among the packets that share a

physical channel
27

Buffer Management

• Credit-based: keep track of the number of free buffers in
the downstream node; the downstream node sends back
signals to increment the count when a buffer is freed;
need enough buffers to hide the round-trip latency

• On/Off: the upstream node sends back a signal when its
buffers are close to being full – reduces upstream
signaling and counters, but can waste buffer space

28

Deadlock Avoidance with VCs

• VCs provide another way to number the links such that
a route always uses ascending link numbers

2 1 0
1 2 3
2 1 0
1 2 3
2 1 0
1 2 3
2 1 0

17

18

19

18

17

16

102 101 100

101 102 103

117

118

119

118

117

116 202 201 200

201 202 203

217

218

219

218

217

216

• Alternatively, use West-first routing on the
1st plane and cross over to the 2nd plane in
case you need to go West again (the 2nd

plane uses North-last, for example) 29

Title

• Bullet

30

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

